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Experimental Study on Embedded Object Imaging Method with
Range Point Suppression of Creeping Wave for UWB Radars

Toshiki MANAKA†, Nonmember, Shouhei KIDERA††a), and Tetsuo KIRIMOTO††, Members

SUMMARY Ultra-wideband radar exhibits high range resolution, and
excellent capability for penetrating dielectric media, especially when using
lower frequency microwaves. Thus, it has a great potential for innovative
non-destructive testing of aging roads or bridges or for non-invasive med-
ical imaging applications. In this context, we have already proposed an
accurate dielectric constant estimation method for a homogeneous dielec-
tric medium, based on a geometrical optics (GO) approximation, where the
dielectric boundary points and their normal vectors are directly reproduced
using the range point migration (RPM) method. In addition, to compen-
sate for the estimation error incurred by the GO approximation, a wave-
form compensation scheme employing the finite-difference time domain
(FDTD) method was incorporated. This paper shows the experimental val-
idation of this method, where a new approach for suppressing the creeping
wave along the dielectric boundary is also introduced. The results from
real observation data validate the effectiveness of the proposed method in
terms of highly accurate dielectric constant estimation and embedded ob-
ject boundary reconstruction.
key words: UWB radars, range points migration (RPM), dielectric con-
stant estimation, non-destructive testing, internal imaging

1. Introduction

Ultra-wideband (UWB) radar, with its high range resolution
and ability to penetrate a dielectric medium, is promising for
various internal imaging applications. For instance, in non-
destructive testing of aging walls, roads and bridges, where
cavities or cracks within the concrete material need to be
detected. Additionally, there are various studies on medical
imaging for the early detection of breast cancer, where a dis-
tinguishable echo from a malignant tumor is used to identify
its location. Various internal imaging techniques, such as
the time-reversal method [1] and the space-time beamform-
ing method [2], have been established for these applications.
However, these methods are based on signal waveform in-
tegration, which often requires a large computational cal-
culation or is not accurate enough to identify the detailed
structure of a target.

For these applications, we have already proposed an ac-
curate and fast imaging method [3] for targets embedded in
a dielectric medium. This method is based on the advanced
principle of the range points migration (RPM) method [4],
which accurately determines the propagation path in a di-
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electric medium by exploiting the target boundary points
and their normal vectors under a geometrical optics (GO)
approximation. Although this method enhances the imaging
accuracy and significantly reduces the amount of computa-
tion by specifying boundary extraction for a homogeneous
medium, it also requires an accurate dielectric constant esti-
mation method to maintain its imaging accuracy.

There are various types of permittivity estimation
methods, based on an inverse scattering scheme for domain
integral equations [5]. Although these methods can directly
reconstruct the spatial distribution of both real and imag-
inary parts of the permittivity, there is a severe limitation
on space discretization size to avoid sluggish convergence
in higher-dimensional optimizations. Other methods such
as a geometric optics approximation for through-the-wall
imaging (TWI) applications [6] require less computational
resource compared with those based on inverse scattering;
however, there is a severe limitation in that these methods
assume a known and simple shape for the dielectric medium,
such as a rectangle.

As a low computational and accurate dielectric con-
stant estimation method, we have already proposed the
method by employing an outer dielectric boundary, which
can be accurately reconstructed by RPM, for propagation
path estimation, based on the GO approximation [7]. Fur-
thermore, this method employs the finite difference time do-
main (FDTD) method to compensate for the estimation er-
ror in the GO approximation, caused by a waveform dis-
crepancy between the transmissive and transmitted signals.
However, this method suffers in some dielectric object cases,
where an undesirable signal propagating along dielectric
outer boundary, the so called creeping wave, is not negli-
gible in the received signal. To overcome this difficulty, this
paper introduces a new approach for suppressing a creep-
ing wave without using a priori knowledge of the shape or
location of the dielectric object, and show the experimental
validation of this method. In the experiment, we assume a
simplified non-destructive testing situation, where a metal-
lic object is embedded in a homogeneous cement medium.
The results demonstrate that the highly accurate dielectric
constant estimation and the internal imaging of the order
of 1/100 the transmitting center wavelength, are simultane-
ously achieved using the proposed method, where the creep-
ing wave component is efficiently suppressed by the newly
introduced approach.

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



BRIEF PAPER
139

Fig. 1 System model.

2. System Model

Figure 1 shows the system model. We assume that an in-
ner target and surrounding outer dielectric object have un-
known shapes with clear boundaries. A dielectric object is
assumed to be a homogeneous, non-dispersive, and lossy
medium. The center location of an antenna scanning orbit
is defined as rC. One omni-directional transmitting antenna
is located at rT = (XT,YT). One receiving antenna is lo-
cated at rR1 = (XR1,YR1), where rC = (rR1 + rT)/2 holds.
The other receiving antenna is located at rR2 = (XR2,YR2),
which is adjacent to the transmitting antenna. These three
antennas simultaneously scan along the circle with center
rC and radius RC. A mono-cycle pulse is used as the trans-
mitting signal, the center wavelength of which is defined
as λ. S R1(rR1; R) and S R2(rR2; R) are defined as the out-
puts of the Wiener filter at antenna positions rR1 and rR2,
respectively, where R = ct/2 is a function of time t and
the propagation speed of the radio wave c in the air. The
range points extracted from the local maxima in S R1 and S R2

are defined as qR1,i = (XR1,i,YR1,i,RR1,i), (i = 1, . . . ,NR1)
and qR2,i = (XR2,i,ZR2,i,RR2,i), (i = 1, . . . ,NR2), respectively,
the detailed process of which is described in [4]. From the
set of qR2, we select qD

R2 which has maximal amplitude of
S R2(qR2) at each antenna location. These are regarded as
range points corresponding to the outer dielectric boundary.
The set of qR2 except for the set of qD

R2 are defined as the
set of qT

R2, which are regarded as those corresponding to an
inner target boundary.

3. Dielectric Constant and Internal Shape Estimation

We have already proposed the promising method [7], which
accomplishes highly accurate dielectric constant estimation
and embedded object imaging by combining with the FDTD
method (once only) to compensate for the estimation errors
caused by the GO approximation. However, this method
suffers from degrading accuracy when a creeping wave,
propagating along the dielectric outer boundary, is not negli-
gible in the received signal on the location rR1. To overcome
this problem, this paper proposes a method for eliminating
range points caused by creeping waves without using a pri-
ori information of the shape and location of the dielectric

Fig. 2 Propagation path of creeping wave.

object. In the following subsections, the methodology to
suppress the creeping wave is first explained, and the exist-
ing dielectric constant estimation method [7] is briefly intro-
duced for reference.

3.1 Suppression of Range Points Caused by Creeping
Wave

To establish the elimination of the range points caused by a
creeping wave, first, this method obtains the outer dielectric
boundary points and their normal vectors by applying the
RPM method to the range points, qD

R2. In addition, to obtain
target points and normal vectors on the dielectric boundary
with a sufficiently dense interval, the Envelope interpolation
described in [8] is also introduced. Especially, the Envelope
method can express a dielectric outer boundary with param-
eter θ, (0 ≤ θ ≤ 2π) as pout(θ) = rc + R(θ)(cos θ, sin θ).
In most cases, the creeping wave, propagating along the
outer dielectric boundary is included in the received sig-
nal S R1(qR1). To identify the transmissive delay penetrating
the dielectric object, the range points corresponding to the
creeping wave need to be suppressed. For this suppression,
the propagation distance of the creeping wave from rT to rR1

as Rcreep(rT, rR1) is calculated:

Rcreep(rT, rR1) =∫ θ2
θ1

R(θ)dθ + ‖rT − pout(θ1)‖ + ‖rR1 − pout(θ2)‖, (1)

pout(θ1) and pout(θ2) are the incident and emission points
on the dielectric boundary for the creeping wave, which
is determined by the condition that their normal vectors
are perpendicular to the radial direction from the transmit-
ting and receiving antennas. In this case, the range points
qR1 = (XR1,ZR1,RR1) satisfying |RR1 − Rcreep(rT, rR1)| < δ
are eliminated, where δ is empirically determined. It should
be noted that there is the limitation for this suppression, in
the case that the difference between the creeping and pen-
etrating paths becomes smaller than the range resolution,
namely pulse width. The remaining range points are defined
as q̃R1 = (X̃R1, Z̃R1, R̃R1), and regarded as the range points
corresponding to the transmissive signal. Figure 2 shows es-
timation example of propagation path for the creeping wave.
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3.2 Combination with Dielectric Constant Estimation

The existing dielectric constant estimation method [7] is
briefly explained for reference purposes. To estimate the
dielectric constant of a surrounding outer medium, this
method calculates the dielectric constant by minimizing the
difference between an observed and estimated propagation
delay as:

ε init
t

(
q̃R1,i

)
= arg min

εt

∣∣∣∣R (εt; X̃R1,i, ỸR1,i

)
− R̃R1,i

∣∣∣∣2, (2)

where R(εt; X̃R1,i, ỸR1,i) is the estimated propagation delay
using the Envelope boundary points expressed as pout(θ) and
their normal vectors determined by the GO approximation
detailed in [7]. Using all transmissive range points, the ini-
tial dielectric constant ε init

t is estimated as:

ε̂ init
t =

∑
q̃R1,i∈Q S R1

(
q̃R1,i

)
ε init

t

(
q̃R1,i

)
∑

q̃R1,i∈Q S R1

(
q̃R1,i

) , (3)

where Q =

{
q̃R1,i|

∣∣∣∣εt (q̃R1,i

)
− ε̃t
∣∣∣∣ < Δεt

}
, where ε̃t is the

mode value in εt
(
q̃R1,i

)
and Δεt is the threshold to eliminate

outliers. Furthermore, to reduce the estimation error caused
by waveform mismatch between the transmitted and trans-
missive waves, the compensation scheme based on FDTD
signal regeneration is applied [7]. The details on this ap-
proach are described in [7]. The final dielectric constant
ε̂t is determined in similar to Eq. (3). Lastly, the boundary
of the embedded target is estimated by the extended RPM
method described in [3], employing ε̂t and qT

R2.

4. Performance Evaluation in Experiment

This section describes the experimental validation of the
method previously mentioned. The upper side of Fig. 3 il-
lustrates the experimental setup. To guarantee a sufficient
accuracy for target manufacturing, this experiment assumes

Fig. 3 Setup for the experiment (upper) and setup for obtaining actual
dielectric constant of cement object (lower).

a simple shape case, where the cylindrical aluminum (inter-
nal object) is embedded in the cylindrical cement (dielectric
object), and they are both 250 mm high. The radii of the
cement and aluminum objects are 139 mm and 25 mm, re-
spectively. The circular scanning model described in Sect. 2
is equivalently accomplished by rotating the dielectric ob-
ject along the center rC, fixing the location of the anten-
nas rT, rR1 and rR2. The target rotation center is set to
rC = (400mm, 400mm), and the distance from the an-
tenna, namely, RC is set to 400 mm. The received sig-
nal is obtained using a VNA (Vector Network Analyzer),
where the frequency is swept from 1000 MHz to 3000 MHz
at 10 MHz intervals. The effective bandwidth is around
2.0 GHz, namely, the range resolution is around 75 mm.
The center frequency is also 2.0 GHz (center wavelength:
150 mm). The actual dielectric constant of the dielectric
object (cement) is measured as 9.07 by assessing the propa-
gation delay when observing a cement object with a cuboid
shape as shown in the lower side of Fig. 3.

Figure 4 illustrates the outputs of the Wiener filter at
S R1(rR1; R) for each rotation angle φC before and after ap-
plying the creeping signal suppression method described in
Sect. 3.1, respectively. The left side of Fig. 4 shows that
each receiving antenna located at rR1 receives a strong signal
propagating around the dielectric outer boundary, namely,
the creeping wave, the range points extracted from which
need to be eliminated for the dielectric constant estimation
of the dielectric object. Note that, while there must be a
whispering-gallery mode wave propagating into dielectric
medium [9], such wave propagates into dielectric medium,
and its propagation velocity become considerably slower
than that of creeping wave. The right side of Fig. 4 ver-
ifies that the proposed approach for suppressing creeping
wave successfully extracts only range points, which corre-
sponds to a transmissive signal penetrating into dielectric
object. The average SNR for reflection signals from outer
and inner boundaries received at rR2 are 51 dB and 35 dB,
respectively. Also, the average SNR for transmissive signals
received at rR1 is 43 dB. Figure 5 shows the histograms of
the estimated dielectric constant for all the range points of
q̃R1, before and after the compensation using the FDTD data
reproduction. Note that the FDTD data regeneration is car-
ried out only once, and it is sufficient to compensate for the

Fig. 4 Outputs of Wiener filter as S R1(rR1; R) and extracted range points
before (left) and after (right) creeping wave suppression.
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Fig. 5 Histogram of dielectric constant estimation before (left) and after
(right) waveform compensation by FDTD method.

Fig. 6 Actual and reconstructed image before and after waveform com-
pensation (WC) (right: enlarged view for internal object).

range estimation error caused by the waveform discrepancy.
The reason for this fact is more detailed in [7]. This figure
verifies that the FDTD-based waveform compensation sig-
nificantly enhances the accuracy of the dielectric constant
estimation. The weighted average dielectric constants be-
fore and after waveform compensation are 8.52 and 8.80,
and the relative errors are 6% and 3% respectively. This
shows that the proposed method accomplishes highly accu-
rate dielectric constant estimation without knowledge of the
shape of the dielectric media using real data. Furthermore,
the right side and left side of Fig. 6 illustrate the actual and
estimated dielectric and embedded target boundary points,
which are reconstructed employing the method in [3] using
RD

R2 and RT
R2 defined in Sect. 2, respectively, before and af-

ter waveform compensation. This figure denotes that the
FDTD-based waveform compensation enhances the accu-
racy of inner object imaging.

Finally, for a quantitative analysis of the internal imag-
ing results, a reconstruction accuracy is introduced as

err
(
q̃R1,i

)
= min

rtrue

∣∣∣∣
∣∣∣∣r̂T

R1

(
qR1,i

)
− rtrue

∣∣∣∣
∣∣∣∣, (4)

where rtrue is the location of the true target points, and
r̂T

R1

(
q̃R1,i

)
denotes an estimated internal target point for each

range point q̃R1,i. Figure 7 shows the number of estimated

target points for each err
(
q̃R1,i

)
before and after waveform

compensation. This figure quantitatively demonstrates that
the waveform compensation significantly upgrades imaging
accuracy, where the mean error for embedded target bound-
ary estimation before and after waveform compensations are
1.98 × 10−2λ and 0.97 × 10−2λ, respectively.

Fig. 7 Histogram for estimation error of inner target points before and
after waveform compensation.

5. Conclusion

This paper investigated the existing method in [7] with ex-
perimental data, where a creeping wave suppression scheme
was introduced by exploiting a unique feature of the RPM
and Envelope methods. In the experimental validation, this
method simultaneously achieved highly accurate dielectric
constant estimation and embedded target reconstruction of
the order of 1/100 of the wavelength scale. However, it
should be noted that this experimental setup assumes con-
siderably ideal situation, that both outer and inner cylinder
objects with exact circle cross section are located at the cen-
ter point of the rotating, namely, symmetric object shape and
scanning trajectory. In the case of asymmetry object shape
such as investigated in [7], the creeping waves propagating
the right and left side of outer boundary are separately ob-
served at the receiving antenna. While the two propagation
paths can be estimated by our proposed method, there is the
possibility that the transmissive signal would not be clearly
extracted, compared with the symmetric case. In addition,
the difficulty for suppressing the creeping wave becomes
more severe, when the dielectric constant and the size of
outer dielectric medium becomes small, because the differ-
ence of time delay between creeping and transmissive waves
becomes also small, that causes the interference of these two
components. Such investigations for more elaborate target
shape or severe case in the experiment should be assessed in
our future work to assure the effectiveness of our proposed
method.
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