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Abstract: Super-resolution time of arrival estimation methods have

attracted much attention in radar signal processing. Many studies

have used compressed sensing (CS)-based approaches to attain the

super-resolution property because they assume sparseness of the ob-

ject temporal distribution. However, this approach still suffer from

accuracy degradation when decomposing highly correlated signals in

heavily noise-contaminated situations. To resolve this problem, this

study introduces an enhanced CS method by exploiting the sparseness

of both the time and frequency domains of the target signals. Numer-

ical simulation and comparison with results obtained by conventional

methods demonstrate that the proposed method considerably enhances

the reconstruction accuracy for multiple highly correlated signals in

lower signal-to-noise ratio situations.
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1 Introduction

Microwave radar systems are used for detection or ranging tools in a wide va-

riety of applications such as all-weather type terrain surface measurement and

automobile or indoor sensing radar in optically harsh environments. How-

ever, owing to regulatory restrictions and hardware limitations, the frequency

bands available for radar are severely limited. Therefore, super-resolution

time of arrival (TOA) estimation approaches such as multiple signal clas-

sification (MUSIC) methods [1] have been intensively investigated in many

previous studies. The MUSIC method exploits the orthogonality between

the signal and noise eigenvector correlation matrix and achieves a higher

TOA resolution than the Capon method or other TOA methods. However,

the MUSIC method requires a priori knowledge of the number of targets

and involves loss of scattering coefficient information[1]. Furthermore, these

methods suffer from low resolution and accuracy when separating highly cor-

related signals that are typically found in multiple reflection echoes in radar

applications. As another solution for this problem, this study focuses on the

compressed sensing (CS) approach[2]. CS is widely recognized as a useful so-

lution for underdetermined and ill-posed inverse problems with constrained

l1 norm minimization. It requires the simple assumption that the spatial or

temporal distribution of targets should be sparse compared with the total

sampled area [3]. There are intensive researches for CS-based signal process-

ing for radar applications, which achieved both a relatively lower sampling

rate and high-resolution property the TDOA (Time Difference of Arrival)

discrimination issues [4]. However, it has been reported that the original CS

algorithm suffers from inaccuracy in the case of strongly contaminated by

noise, especially when highly correlated target signals are also closely located

within the theoretical range resolution.

To retain the TOA accuracy and resolution under the situation that

highly correlated signals are mixed together in lower SNR levels, this study

introduces sparse regularization for the frequency domain in the original CS

cost function. This regularization term prevents an over-fitting to noise com-

ponent in the frequency domain, acting as a kind of a bandpass filter. Nu-

merical simulation demonstrates that the proposed method retains sufficient

TOA resolution and accuracy even under conditions of considerably lower

SNR.

2 System Model

It is assumed that the system is a monostatic radar system and that the

temporal distribution of multiple-point scatterers can be expressed as;

θ(t) =

NT∑
i=1

aiδ(t− τi), (1)

where δ(∗) is Dirac’s delta function, ai and τi are the i-th scattering coefficient

of scatterers and time delay, respectively, and NT is the number of targets.
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The receiving signal x(t) is expressed as;

x(t) =

∫ ∞

−∞
θ(t− τ)h(τ)dτ + n(t), (2)

where h(t) is the transmitting signal and n(t) is the thermal noise at the

receiver. The discrete form in Eq. (2) is expressed by

x = Φθ + n, (3)

where θ = [θ(−K∆t), · · · , θ(0), · · · , θ(N∆t)]T , x = [x(∆t), · · · , x(N∆t)]T ,

n = [n(∆t), · · · , n(N∆t)]T , and

Φ =


h(K∆t) · · · h(0) 0 · · · · · · 0

0 h(K∆t) · · · h(0) 0 · · · 0
. . .

0 · · · · · · 0 h(K∆t) · · · h(0)

, (4)

where K and N denote the data lengths of the transmitting and receiving

signals, respectively. ∆t denotes the sampling interval. Φ is the observation

matrix; and θ is the actual target distribution. In the case of typical TOA

estimation by radar systems, this guarantees that NT ≪ N , corresponding

to the sparse representation.

3 Conventional Methods

Many studies have been performed aiming to achieve super-resolution TOA

estimation. Notably, the MUSIC method [1] exploits the orthogonality be-

tween the signal and noise eigenvectors of the correlation matrix to retain

super-resolution property beyond the bandwidth. As an alternative ap-

proach, CS-based signal decomposition has recently come under the spotlight.

The CS-based method achieves accurate signal reconstruction by introducing

sparse regularization in the time domain [3].

This is realized by calculating θ solving the following formula;

θ̂ = arg min
θ

(
∥x−Φθ∥22 + λ∥θ∥1

)
, (5)

where λ is the regularization coefficient and the ∥v∥p is lp norm and denotes

(|v1|p + · · ·+ |vN |p)
1
p . While this method achieves super-resolution even for

highly correlated signals, and has some advantages relative to the MUSIC

based approaches, it still suffers from inaccuracy or degraded resolution in

considerably lower SNR situations. This means that the regularization in the

time domain is insufficient for suppressing the over-fitting problem in such a

case TOA estimation.

4 Proposed Method

To overcome the problem described above, this study introduces frequency

domain based regularization into the original CS formulation. It should be

noted that is that the target signal should take a sparse distribution not only

in the time domain but also in the frequency domain by using much higher
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Fig. 1. Waveform of transmitted signal (upper) and

Power spectrum of transmitted signal (lower).

A/D conversion than the upper limitation of the Nyquist frequency. In ad-

dition, when we have a priori knowledge of of the maximum frequency of

received signals, usually retrieved from the effective bandwidth of the trans-

mitting signal, a sufficient oversampling in the time-domain can be obtained

by using zero-padding process in the frequency domain. Then, the domi-

nant ratio of received signal in the frequency domain considerably decreases,

namely, a sparsity in the frequency domain is guaranteed. Focusing on this

property, the proposed method introduces another regularization term as

θ̂ = arg min
θ

(
∥x−Φθ∥22 + λ ∥θ∥1 + β ∥FΦθ∥1

)
, (6)

where F denotes the discrete Fourier transform matrix operator and β is

the regularization coefficient. Equation (6) constrains the degree of freedom

of reconstructed signals in terms of frequency and time domains. Thus,

it prevents the over-fitting to the noise component more strictly than the

original CS formulation in Eq. (5).

5 Performance Evaluation Using Numerical Simulation

This section describes the performance evaluation of each method through

numerical simulation. Here, the transmitting signal is a chirp-modulated

pulse, expressed as

h(t) = R (t;T ) exp
(
jαt2

)
, (7)

R (t;T ) =



− cos
(π
τ
t
)
+ 1 (0 ≤ t < τ)

1 (τ ≤ t < T − τ)

cos
(π
τ
(t− (T − τ))

)
+ 1 (T − τ ≤ t ≤ T )

0 (otherwise)

, (8)

where α is the chirp rate and T is the pulse length. τ = 1.5∆τ0, where ∆τ0

denotes the time resolution determined by the effective frequency bandwidth

of the transmitting signal. Figure 1 shows the assumed transmitting signal

in the time and frequency domains. Received signals are generated by Eq. 2
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Fig. 2. Reconstruction results at SNR=15dB, in the case

of two targets. (a) : The original CS. (b): The

proposed methods

with complex white Gaussian noises added as thermal noise n(t). The SNR

is defined as the time-averaged power ratio between the signal and noise after

applying a bandpass filter determined by the bandwidth of the transmitting

signal. The simulation parameters are summarized as follows. The number

of targets is 2, the temporal interval of two targets is ∆τ0/8, the sampling

interval is ∆τ0/16, the regularization coefficients are λ = 0.5, β = 0.01, and

the pulse length is 16∆τ0.

Figure 2 shows the reconstruction outputs obtained by the original CS,

and the proposed methods, when the mean SNR is around 15 dB. Here, the

interior algorithm is used for CS optimization problem, by considering the

balance between optimization accuracy and computational cost. The tempo-

ral interval is set as ∆τ0/8. This figure demonstrates that all methods can

decompose highly correlated signals that are adjacent within the temporal

resolution. While the original CS methods fail to decompose the two targets,

the proposed method maintains the accuracy and resolution, where the two

targets are separately decomposed with actual locations.

The RMSE is investigated as reconstruction accuracy evaluation. The

RMSE denoted as ϵ and is defined as

ϵ =

√
∥θ̂ − θtrue∥22

Ndata
, (9)

where θ̂ and θtrue denote the reconstructed and actual target responses. Ndata

is the data length of the target distribution. Figure 3 plots the median ϵ ver-

sus the SNR for each method, with the error bars denoting the interquartile

range of ϵ. The number of Monte Carlo trials is 100 in this case. Figure 3
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Fig. 3. Median and IQR of ϵ versus SNR for each method

in the case of two targets.

demonstrates that the proposed method retains more accurate target recon-

struction for not only temporal distribution but also each scattered coeffi-

cient. Each calculation time is 17.2 sec for the original CS method and 29.1

sec for the proposed method, respectively, in using an Intel(R) Xeon(R) E5-

1620 3.60 GHz processor, where each time value is averaged over 100 trials.

The time required for the proposed method is 1.7 times greater than that for

the original CS method. The main reason for the higher computational cost

is that the proposed method introduces two regularization terms, leading to

a sluggish convergence to the optimal solution.

6 Conclusions

Exploiting the sparseness of a received signal spectrum, this study introduced

a sparse regularization term in the frequency and time domains to resolve

the TOA estimation issue. Numerical simulation results demonstrated that

our proposed method maintains the accuracy and super-resolution property

even in lower SNR situations, where the completely correlated signals are

interfered within an interval that is considerably smaller than the theoretical

TOA resolution.
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