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Abstract— Ultrawideband radar with high-range resolution is
a promising technology for use in short-range 3-D imaging
applications, in which optical cameras are not applicable. One
of the most efficient 3-D imaging methods is the range-point
migration (RPM) method, which has a definite advantage for the
synthetic aperture radar approach in terms of computational
burden, high accuracy, and high spatial resolution. However,
if an insufficient aperture size or angle is provided, these kinds
of methods cannot reconstruct the whole target structure due
to the absence of reflection signals from large part of target
surface. To expand the 3-D image obtained by RPM, this
paper proposes an image expansion method by incorporating
the RPM feature and fully polarimetric data-based machine
learning approach. Following ellipsoid-based scattering analysis
and learning with a neural network, this method expresses the
target image as an aggregation of parts of ellipsoids, which
significantly expands the original image by the RPM method
without sacrificing the reconstruction accuracy. The results of
numerical simulation based on 3-D finite-difference time-domain
analysis verify the effectiveness of our proposed method, in terms
of image-expansion criteria.

Index Terms—3-D sensors, fully polarimetric analysis, image
expansion, range-point migration (RPM), short-range sensing,
ultrawideband (UWB) radars.

I. INTRODUCTION

N ULTRAWIDEBAND (UWB) pulse radar is expected

to be adopted in innovative short-range sensing tech-
niques, such as robotic sensors in disaster rescue situ-
ations or private watch sensors for independently living
elderly or disabled persons. To provide accurate high-
resolution 3-D images, researchers have investigated vari-
ous radar imaging methods based on data synthesis, such
as the synthetic aperture radar (SAR) [1], time-reversal
algorithms [2], [3], and range migration methods [4]-[6].
However, all of these methods incur impractically large
computational costs, particularly in 3-D imaging problems,
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and their reconstruction accuracies are insufficient to cap-
ture the detailed structures of target shapes. As a different
approach, the method [7] has been developed, which is
based on reversible transforms, namely, boundary scattering
transform. While this method achieves a fast 3-D imaging
in specifying boundary extraction, it suffers from serious
accuracy degradation in noisy or interfered cases assuming
multiple or complex-shaped targets due to being based on the
difference operation of observed ranges. In contrast, the range-
point migration (RPM) method extracts the 3-D target bound-
ary even in noisy or richly interfered case [8]-[10]. The RPM
method assesses the distribution function of the direction of
arrival (DOA) for each observed range point (denoted as a
set of antenna location and range), and does not require any
paring procedure of discrete range points as preprocessing.
It also accomplishes highly accurate 3-D imaging for general
target shape in far less computation costs compared with
that required by conventional signal synthesis approaches
such as the 3-D beamforming or SAR-based reconstruction
scheme. The effectiveness of RPM has been widely reported
in short-range radar and acoustic imaging studies [11]-[13].
However, the image reproduction area obtained by the RPM
and other conventional methods is, usually severely limited by
an available aperture angle, determined by the aperture size
and distance to target, which is itself restricted by obstacles
such as rubble in disaster zones and indoor sensing problems.
For these reasons, the reconstructed area frequently becomes
too narrow to identify the target structure, and this is an
essential problem in any kind of imaging methods as far as
they use only the direct reflection signal for imaging.

To alleviate this problem, an image expansion method
based on ellipse expansion has been proposed [14]. In the
method [14], a target, such as human body, is approximated
by an aggregate of ellipsoids representing the head, trunk,
and limbs; each clustered RPM image is then expanded to a
single ellipsoid. The method [14] uniquely computes ellipsoid
fitting in data space (constituted by the range points) rather
than in real space, avoiding the errors introduced by the
RPM imaging process. Although the method [14] accurately
expands ellipsoidal targets even in noisy situations, shapes that
significantly differ from ellipsoids (such as tori and cylinder)
are naturally degraded by the expansion.

To address the above problem, this paper proposes a novel
image expansion algorithm by incorporating the RPM feature
and fully polarimetric data-based machine learning. Namely,
our goal is a more efficient and reliable expansion from the
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Fig. 1. System model.

original RPM image with fully polarimetric data. While some
studies for incorporating polarimetric data and RPM method,
for super-resolution range data extraction [15] or accuracy
improvement [16], have been investigated, there are no study
for the challenge of image expansion using fully polarimetric
data. There are several studies for the polarimetric analysis of
the short-range sensing issue [17], [19], [20]. Such literature
reveals that the fully polarimetric data exploitation has a
possibility to offer a significant improvement for image recon-
struction. For more particular investigation for improving the
RPM image, this paper tries to relate the fully polarimetric data
in the time domain to the target structure focusing on single
ellipsoid. According to this analysis, the fully polarimetric data
can reveal the axial radii and rotation angles of the ellipsoids.
Furthermore, several significant ellipsoidal parameters can
be acquired by a neural network (NN) at a single-antenna
location.

Finally, we expanded the image from the target points
obtained by the RPM method, fitting an aggregation of the par-
tial ellipsoidal surface estimated by the fully polarimetric data
to each RPM point. Note that the multiple-partial-ellipsoid-
based image expansion, proposed in this paper, is done by
exploiting the RPM feature such as one-to-one correspondence
between the range point and the target point. This approach
fundamentally differs from the conventional one, which relies
on fitting a single ellipsoid [14], and is effective for the
not-ellipsoidal shape without sacrificing accuracy degrada-
tion. Utilized on the data generated by finite-difference time-
domain (FDTD) simulations, the proposed method yielded a
significantly more expanded target image than did the original
RPM method, even for nonelliptical objects.

II. SYSTEM MODEL

Fig. 1 shows the system model. An omnidirectional antenna
is scanned on the xy plane, where each location is defined
as (X, Y, 0). The monostatic radar is assumed. The transmitted
signal as the current source is defined as the monocycle
pulse with a center wavelength A. It assumes the multiple
linear polarizations for the x- and y- directions in transmitting
and receiving, respectively. s/ (X Y, t) denotes the received
electric field at the location (X Y,0), at time ¢, when the
transmitting polarization and the receiving polarization are
along the i(x or y)-axis and j(x or y)-axis, respectively.
5:,j(X, Y, 1) is the output of the Wiener filter of Sz{, j (X,7,1)
calculated as

5 (X, Y, 1) —/ W(w)S; (XY, w)e!” dw (1)
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where S; j(X Y, ) is the signal in the frequency domain of
(X Y t). W(w) is defined as

Sref (@) * )
(1= 1)SG + 1l Sref ()|

where 7 = 1/(1+ (S/N)™"), and Spef(w) is the reference sig-
nal in the frequency domain, which is the complex conjugate
of that of the transmitted signal. Sp is a constant for dimension
consistency. This filter is an optimal mean-square-error linear
filter for additive noises. §; ; (X, Y, ) is now converted into
5i,j(X,Y, R) using R = ct/2A, where c is the speed of the
radio wave. The range point extracted from the local maxima
of sy x(X,Y,R) as to R is denoted as ¢ = (X, Y, R); the
details are given in [8].

W(w) = )

III. RPM METHOD AND CONVENTIONAL
EXPANSION APPROACH

A. Original RPM Method

We have already established an accurate and high-speed
3-D target boundary extraction method as the RPM method,
which can be applicable to various 3-D target shapes having
concave surfaces and edge ridges with 1/100 wavelength
accuracy [8], [9]. The RPM method method is based on the
assumption that a target boundary point (x,y,z) exists on
a sphere with its center as the antenna location (X, Y,0)
and its radius as the observed range R. The DOA for each
range point ¢; = (X;, Y;, R;) can be determined by assessing
the spatial accumulation of intersection points of the spheres,
whose center is (X, ¥;, 0) and radius is R;. The RPM method
determines the target point for the range point ¢; as

arg max Z

P"™4q::9,-9,)<Pi (q;.9,)€Qi
[ Ip"™(q::q;.9:) — P™(gq;: qz,qm)llz}
X exp | — 3

plg) = 2(q;39;.9%)

3)

where pim(qii q4j,q;) denotes the intersection point among
the three spheres, determined by the range points ¢;, ¢ ;, and
qy. or is an empirically determined constant. Fig. 2 presents
the spatial relationship between the three spheres with g;,
4. qi. and its intersection point. The weighting function
8(qi; q;,qy) is defined by

. B D(@g;.9))
g(q,-,qj,qk)—s(q,-)eXP[ BT ]
D(q;,q,)*
+s(qk)exp[—%} @)
D

where s(g;) denotes the amphtude of s(g;) at R = R;
and D(q;,q;) = ((Xi— X) + (Y; —Y)z)l/2 holds
Equation (4) yields the convergence effect of intersection
points with respect to the antenna locations. A set of inter-
section points as P; is defined as

={p"(q::4;-901(q;.q1) € Qi) )
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Fig. 2. Relationship among three spheres determined by ¢;, ¢ ;, g, and its
intersection point.

where Q; denotes the investigating region of antenna locations.
Note that each target point denoted as p(q;) is associated with
each range point ¢;, which means the one-to-one correspon-
dence between them. While the RPM method accomplishes
accurate and fast 3-D imaging, even in a richly interfered situa-
tion caused by multiple-target reflection or noisy environment,
it (also SAR or others) suffers from an insufficient imaging
region, when the aperture size is small. This insufficiency is
an essential problem in radar imaging methods, and should be
resolved by other approaches, such as expansion schemes.

B. Single-Ellipsoid-Based Expansion Method

Here, we briefly introduce the imaging method conven-
tionally used to expand target image regions [14], which
is based on an ellipse expansion of an image obtained by
RPM. The method [14] performs ellipse fitting in the data
space comprising the antenna location and the observed range,
which is enabled by the unique feature of RPM imaging [8].
Ellipse fitting of the RPM image in real space is overly
sensitive to the errors introduced by the RPM imaging process.
In contrast, ellipse fitting in data space is essentially imper-
vious to the imaging error, because the fitting process is
directly carried out without the imaging process, whereas RPM
is only employed in image clustering. More specifically, the
method [14] first uses the target points produced by RPM only
for the clustering of the range points, the distribution of which
in data space is often very complicated in the case of multiple
targets. The clustered range points are then employed for
ellipse fitting, which is converted in the data space. However,
the method [14] assumes that the target is shaped similar
to an ellipse and is inaccurate for significantly dissimilar
shapes. The applicability for the nonellipsoidal target, such
as the target with edge or having multiple reflection points,
has also been demonstrated [8], where the fatal inaccuracy for
expansion has been confirmed. This is natural because of a
simple assumption that the target should be expressed as a
“single ellipsoid. In addition, multiple targets or complicated
target shapes must be correctly clustered; otherwise, serious
expansion errors occur.

IV. PROPOSED METHOD

This section proposes a novel method that exploits the fully
polarimetric data, expanding RPM images to variously shaped

Target

Y
Antenna (0,0,0)

0
270 y/2

Fig. 3. Observation model for fully polarimetric analysis of a single-ellipsoid
target.

targets, and thereby solving the above-mentioned problem.
In many studies, significant information on a target struc-
ture or a condition has been obtained by analyzing or decom-
posing multiple polarimetric SAR images [17], [19], [20].
Thus, the potential of utilizing fully polarimetric data in
the object or scene detection is well recognized. This paper
focuses on the image expansion issue for the reconstructed
RPM image, by extracting the polarimetric feature through
the time-series data-based NN learning and appropriate fitting
algorithm for the nonellipsoidal-shaped target.

A. Polarimetric Analysis of Single-Ellipsoid Target

We first investigate the relationship between the time-
series waveform of the fully polarimetric data and ellipsoid
parameters (the axial radius and rotation angle). Fig. 3 shows
the observation model that is subjected to polarimetric analy-
sis. The target is assumed to be a single ellipsoid centered
at (0,0, z.). The antenna is located at (0,0, 0). Here, a, b,
and c¢ are the radii of the ellipsoid along the x-axis, y-axis,
and z-axis, respectively, and @ is the rotation angle about the
z-axis. The observation data are generated by the FDTD
method. Fig. 4 shows the Wiener filter output of the received
signals sy, Sx,y, and sy y in the time domain, where the
parameter a is varied while other parameters are fixed (b =
1.04, ¢ = 0.57, and 8 = 0°). In this figure, the amplitudes
of sy x and sy y are positively correlated with the axial radius
a of the ellipsoid, while that of sy, does not significantly
change with the axial radius. This fact demonstrates that the
amplitude of polarized data along the major axis of an ellipsoid
is directly related to the expansion of ellipsoid, where the
x-y polarized data do not affect significantly, and this indicates
that sy  and sy, contribute to the size estimation of the target
shape. Fig. 5 shows the Wiener filter output of the received
signal sy y when @ is varied and the other parameters are fixed
as a = 3.04, b = 2.04, and ¢ = 0.54. Fig. 5 also shows that
an amplitude of s, , data significantly increases according to
target rotation to maximum at 45°. The received amplitude of
sx,y strongly correlates with the rotation angle; moreover, the
sign of the phase indicates the rotation direction. Therefore,
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Fig. 4. Outputs of the Wiener filter sy x (0,0, R), sx, (0,0, R), and

sywy(O, 0, R) when a is a variable and other parameters are fixed as b = 14,
¢=0.54, and 6 = 0°.

=m0 =0 mf =20 =0 =40
- =—20" = =—40"

0.02

0.01

)
2 0l
&

Amplitude of

-0.01

-0.0%

5 5 S.SR//16 6.5 7

Fig. 5. Outputs of the Wiener filter sy, (0,0, R) when @ is a variable and
other parameters are fixed as a = 34, b = 24, and ¢ = 0.54.

the rotation angle of the ellipsoid can be estimated from the
sx,y signal. The fully polarimetric data, especially those of
the time-series waveform, contain important information on
both the local structure and global expanse of the target shape.
Then, one RPM imaging point with no size can be expanded
by the partial ellipsoidal surface if such information can be
extracted by fully polarimetric data.

B. Neural Network Learning for Fully Polarimetric Data
Based on previous analysis, the proposed method first
prepares a time-series data set of various ellipsoids with their
a, b, c, and 6 parameters. These parameters play an important
role in the expansion process, because the proposed method
relies on the expansion with an aggregation of ellipsoid.
Thus, fully polarimetric data for each range point need to
be associated with an ellipsoid, the part of which expresses
the local boundary of the actual object. In this method,
such an association has been achieved via the NN-based
training process as follows. Note that, when one considers the
reflection data from the ellipsoid object, there is a creeping
wave propagating along the backside of the object. However,
the strength of this component is much smaller than that of
direct reflection, e.g., specular reflection; then, we deal with
the time-series data with a finite length. To generate the input
data for the windowed time-series data, we defined an input
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Fig. 7. Layer structure of the NN in the proposed method.

vector s?‘} (X,Y,R)(i = x,y,j = x,y) for each range point
q=(X,Y,R)

SEI}(X, Y,R) =[sij(X,Y,R),s;;(X,Y, R+ AR), ...,

where AR corresponds to the time-window scale and K is a
constant natural number. Fig. 7 shows the structure of the NN.
In the training sequence, the input data of the received signal
of the antenna located at (0, 0, 0), namely, (X, Y) = (0, 0), are
used, for simplicity, where the ellipsoid parameters (a, b, ¢, 6)
are varied.

These parameters significantly depend on the amplitude of
the input signal. Therefore, when inputting the received data
into the trained NN, the propagation attenuation of the received
amplitude must be considered, because the amplitude directly
affects the size of the ellipsoid in the proposed method. The
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Fig. 8. Scheme comparison between the conventional and proposed methods.

proposed method compensates for the propagation attenuation
of each received signal by applying a function of the measured
range R. Theoretically, the amplitude of a signal radiated from
a point source is attenuated on the first order of the propagation
range. However, in this case, we must consider the reflection
signals from various shapes of target, and it is generally
difficult to estimate an attenuation ratio without the knowledge
of the target shape, theoretically. To address this problem,
we investigated the attenuation ratios from various ellipsoids
at various distances and calculated the average attenuation
ratio. Specifically, the distance from an ellipsoid target to the
antenna was rescaled as 1.04 to 104 in the 1.01 interval. The
antenna was located at (0, 0, 0), and the observation data are
also generated by FDTD. The ellipsoid was postured as shown
in Fig. 3. The ellipsoid parameters a, b, and ¢ are each varied
as 0.54, 14, 1.54, 24, 2.5/, and 34, while 6 = 0° is fixed.

The input time-series data §;; (X, ¥, R)(i = x,y, j = x, y)
are then compensated as

§ij (X, Y, R) = f(R/Ro)s;; (X, Y, Ro) )

where f(R/Rp) denotes the averaged attenuation ratio and Ry
is the reference distance. Note that f(R/Rp) is a polynomial
function of R/ Ry, which is fitted to the logarithm of the above-
described data set.

C. Multiple-Ellipsoid-Based Image Expansion for RPM Point

Our image expansion methodology relies on fitting each
RPM target point to a partial ellipsoidal surface with parame-
ters estimated by the above NN approach. In the literature [14],
each group of target points obtained by RPM was expanded
as a single ellipsoid, which is problematic for shapes that
widely differ from ellipsoids. Thus, the proposed method
expresses each RPM target point as part of an ellipsoid surface,
that is, a single target shape is expressed as an aggregation
of partial ellipsoidal surfaces. Fig. 8 shows the difference
between the conventional and proposed schemes for image
expansion. In this sense, our method differs from that in [14].
Fig. 9 illustrates the basic concept of the multiple ellipsoid-
based expansion scheme. In the proposed method, the part of
each ellipsoid (estimated by each g, through the trained NN)
is fitted to each RPM point as p;, using the line-of-sight (LOS)
direction e}. Note that, to avoid overfitting, only a portion of
the ellipsoid is used for image expansion.

Antenna
(X kr Yk ’ 0)

Antenna
(Xk' Yk' 0) i

2 0
4 x/A

Example of the expanded result by the proposed method.

Fig. 9.

For appropriate fitting of the partial ellipsoid, the ellipsoid
boundary points are converted to fit the RPM point and its
LOS direction as

Xk cosf —sind 0 acos¢cos y
y;ﬁE = | sind cosd 0 b cos ¢ sin y
zE 0 0 1 ¢ sin y
0
+ 0 (8)

Ri—(zc—¢/2)

where (a, l;, c, 9) is estimated parameters for the range
points g, and ¢ and y are the azimuthal and elevation angles
of the ellipsoid, respectively. To determine the ellipsoid for
each target point, we need to estimate the 9 degree of free-
dom. In this case, we investigate four independent parameters
a, b, ¢, and ¢, and need to determine other five parameters
from the RPM point and its geometrical characteristic. Here,
applying RPM to the range points q; = (X, Yk, Ri), we also
estimated a corresponding target point p;, = (xk, Yk, zk). Note
that each target point p; satisfies a one-to-one correspondence
with each range point q;; this feature is unique to RPM
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Fig. 10. Ellipsoid rotation and translation along the LOS direction ey.

imaging. Under the assumption that the antenna receives a
strong echo from the target boundary, which is perpendicular
to the LOS direction on p;, the unit vector of the LOS
direction, that is, the normal vector on the target boundary,
is calculated as e, x = (pr — Xk, Yi, 0) /I pr — Xk, Y, 0)]l.
In addition, since the target boundary should be tangent to the
plane orthogonal to this normal vector, the expanding ellipsoid
should also be tangent to the target boundary. Even in this
geometrical condition, the total parameters of the ellipsoid
cannot be uniquely determined; then, for simplicity, we assume
that the tangential point of each ellipsoid is located at an
elevation angle y = —x /2.

Then, the LOS direction in the learning process as in Fig. 3,
namely, e, = (0,0, 1), is converted to that for each range
point g; according to ej. According to conversion, each
point (xf, yF, zF) on the estimated ellipsoid boundary is also
converted as

Rie(e, &Y (xf L yE 2E) + (Xp Y, 0)F
)

FE, 5, 2)" =

where the matrix Rk(erOt é,g"t) denotes 3-D rotation along

the axis e”' = ((e; x €})/(le; x e}|)) with the angle & =
os”!(e; - e;). Specifically, the matrix is calculated as (10),
as shown at the bottom of the page.

where €;°' = (6;056, ;05(, EO}C) and Cy = 1 —cos &, Fig. 10
illustrates the translation and rotation of the ellipse so as to fit
the target point py.

Finally, a part of the ellipsoid is extracted as {; for each qx-
To accomplish an edge-preserving property in the expansion
process, the proposed method changes the size of the portion
of the ellipsoid, corresponding to the curvature radius of the
target surface. The literature [22] or [23] revealed that the
following matrix can assess the curvature radius along each
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where (xk, Vi, zx) denotes the target boundary point estimated
by RPM corresponding to q; = (Xk, Y, Rr). Note that each
difference approximation in the right-hand term in 11 is readily
calculated by using the one-to-one relationship between g,
and (xg, vk, zx). Fig. 11 shows the relationship between object
boundaries with a small or large curvature radius, and the
value of Oyr/6Xj in the 2-D view. As shown in Fig. 11,
0yr/0 X\ can approximately and simply assess the curvature
radius indirectly. Then, the parameter for the expansion area
is calculated as follows:

&) = Vur(w)> +ok(w)? ¢p (0 <y <2m)
(12)

Ui (A1 cos(y) Ao sin(y))” (13)

where w and ¢ () denote the elevation and azimuth angles
of an expanded ellipsoid, respectively. A;x and Ao are the
eigenvalues of S, which determine the principal curvature of
(xx» Yk, zx), and Uy is the matrix consist of the eigenvectors
of Si. wE is determined empirically. This process enables us to
change an expansion area depending on its curvature, namely,
an edge-preserving is possible.
Then, the expanded image Qex is determined as

e =
k

The bottom side of Fig. 9 denotes the area-limitation example,
described above.

After training process through the NN with the FDTD
data, the actual imaging process in the proposed method is
summarized as follows.

() ox(y)" =

(14)

Step 1): Target boundary points p; = (xx, Yk, zk)(k =
1,..., Nrp) are obtained by applying the RPM to
q, = (X, Yk, Rk), which is extracted from the local
maximum of sy (Xk, Yk, Rk).

Ck( rot ) + cos irot
rot I‘Ot rot Tot
CkeZ K€k — €k sin &

rot jrot _ rot Tot
CkeZ KCxk — € ksm X

Re(ef", %) =

rot ,rot
X key k

Ck( rot ) + cos érot

rot rot rot Tot
VkCok + e singy

Cre

Cre

I‘Ot Sln 51’0'[ Ckegol'iem}{ _"_ eI‘Ot Sln irot
Cke;o';ce[z‘oltc _ eI‘Ot Sln 5[‘0t

Ck( rot) + cos é:rot

(10)
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—- — TABLE I
s~~~ Training Process *===v  { Imaging Process 3
H ESTIMATION RESULTS FOR THE NN-BASED
FDTD data generation i ( Target boundary PARAMETER ESTIMATION OF A SINGLE ELLIPSOID
from single ellipsoid ! estimation by RPM ! True Estimated Relative error
: with various (a, b, ¢, 6) i | L Target point : py, i (@/Ab/Aec/\0/deg) || (a/A\b/Nc/\0/deg) (a,b,c,0)[%]
i P S (@i Sy (@1, (1.70,1.00,2.50,30.0) (1.72,0.97,2.51,28.0) (1.14,2.68,0.28,6.76)
i 1 Syy (@) (1.50,2.20,3.00,20.0) (1.51,2.18,3.00,21.7) (0.85,0.73,0.05,8.53)
N i Ellipsoid estimation (1.00,2.00,2.70,40.0) (1.01,2.01,2.69,43.2) (0.62,0.56,0.24,7.99)
Trax‘ii'ﬁgaﬁe;];;'])“g;g’rk W ; for each pj with trained (2.00,1.50,1.00,-35.0) || (2.02,1.48,0.97,-37.0) || (0.97,1.48,3.48,5.39)
J AN neural network ) (1.40,2.80,2.00,10.0) (1.40,2.82,2.01,9.6) (0.33,0.64,0.36,3.68)
i H l (G B 0 61) (2.30,1.50,1.10,20.0) (2.38,1.47,1.09,19.1) (3.39,2.18,1.07,4.34)
. - 4 -~ ~N 0 (2.80,2.50,0.50,25.0) (2.64,2.67,0.53,20.7) (5.87,6.77,5.92,17.34)
Translating and rotating i (3.00,1.70,0.90,30.0) (3.22,1.78,0.85,28.2) (7.48,4.97,5.27,6.15)
ellipsoid to fit py, (2.50,1.30,2.00,13.0) (2.53,1.32,2.04,14.0) (1.20,1.82,2.03,7.48)
\ (1.00,2.00,2.40,-15.0) (1.02,2.01,2.39,-14.9) (1.76,0.67,0.22,0.55)
l (2.80,1.70,1.10,35.0) (2.81,1.74,1.16,36.6) (0.35,2.46,5.00,4.57)
( A
False image suppression !
with Egs. (15) and (16) ! .
(AN _ J oA method. In addition, the proposed method does not need
1 . . . . .
P l e | any clustering scheme for RPM points in advance, which is
i Synthesizing image required in [14]. This is because each ellipsoid is indepen-
L as ey = U ) dently assigned to each target point.
\ 7

Fig. 12.  Flowchart of the proposed method.
Step 2): s;"} (X, Y, R) for q; (uniquely connected with p,)
are extracted as in (6), and are compensated as
521},1((}( ,Y, R) in (7) corresponding to the observa-
tion distance Ry.
Step 3): 8 (X, Y,R) is inputted to the trained NN
for obtaining the parameters of the ellipsoid as
(ak, b, Ck, Ok).
Each estimated ellipsoid denoted as (x£, yZ, zF) is
rotated and translated as ()E,f, f,f, Zf ) so that it fits
each target point p;, = (X, yk,zk) in (9), and its
partial area as Qy is extracted.
For all range points g, Steps 2) and 5) are carried
out and an expanded image as Qy is generated.
For the [-th discrete member belonging in X,
denoted as pf’ I the following evaluation function
is introduced:
‘2

. lelil - p;ﬁ,n

Step 4):

Step 6):

Step 7):

cpEp= D exp o (15)
mon, (m#k) %

If the following condition is satisfied:
¢(pEy) =y maxc(py,). (16)

The point p,f, ; is removed from Q. The final
expanded image Qox is expressed as an aggregate
of O as in (14).

Fig. 12 outlines the flowchart of the proposed method. Note
that the postprocedure in Step 7) eliminates the large deviated
points in considering the spatial density of all expanded
imaging points as p,’i ;- The parameter o, can be determined
by considering the assumed sampling interval of each discrete-
formed ellipsoid. As in this flowchart, once the NN learned
the training data generated by the FDTD, the proposed method
does not require the FDTD or NN training process for each
imaging, which maintains high-speed 3-D imaging with this

V. PERFORMANCE EVALUATION IN
NUMERICAL SIMULATION

This section describes two types of performance evalua-
tions. One is the evaluation of NN-based learning using fully
polarimetric data, where unknown parameters of ellipsoid are
estimated by the NN with the time-series database. The other
demonstrates the performance of image expansion by our
proposed method, namely, multiple-ellipsoid-based expansion
for RPM imaging points.

A. Ellipsoid Parameter Estimation by Neural Network

This section reports on the parameter estimation of a single
ellipsoid from the fully polarimetric data set. The antenna is
located at (x,y,z) = (0,0,0). During the learning stage of
the NN, the parameters a, b, and c of the training ellipsoids
are varied as 0.54, 14, 1.5, 24, 2.54, and 34, and 0 is
varied as —40°, —30°, —20°, —10°, 0° 10°, 20°, 30°, and 40°,
respectively. All of these a, b, ¢, and 6, namely, 1944 different
combinations are used as the training data. The conductivity
and relative permittivity of the ellipsoid target are set to 1.0 x
107 S/m and € = 1.0, respectively. The observation data are
generated by the FDTD method assuming a noiseless situation.
The NN contains three hidden layers, with 30 neurons in the
first layer, 20 in the second layer, and 10 in the final layer.
Here, K AR = 1.44/, and the sample interval of the range as
AR = 0.03] is set in (6). Table I lists the parameters of the
ellipsoid targets estimated by the trained NN. The untrained
parameters are depicted in red font. From Table I, it can be
observed that the time-series-based NN accurately estimated
the ellipsoidal parameters. The average relative errors in a, b,
¢, and @ are 2.7%, 2.3%, 1.3%, and 6.9%, respectively.

B. Expansion Performance

This section presents the expansion results of our pro-
posed method. The transmitting and receiving antenna sets
are scanned over the area —2.54 < x,y < 2.54 at 0.51
intervals in the x- and y-directions. Again, the observation
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Fig. 13.  Target boundary points estimated by the RPM method for a
single-ellipsoid target in a noiseless situation. (a) Projection to the xy plane.

(b) Cross section of the y = 0 plane. Solid lines: discrete expression of the
true boundary.
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Fig. 14. Expansion result of the proposed method for a single-ellipsoid target
in a noiseless situation. (a) Projection to the xy plane. (b) Cross section of
the y = 0 plane. Solid lines: discrete expression of the true boundary.

data are generated by the FDTD method. Here, the operational
frequency band (10-dB criteria mostly used in the UWB
signal) in this simulation is about 2.0 GHz, and its range
resolution is 150 mm. The center frequency is 3 GHz (the
corresponding wavelength in the air is 100 mm), denoting that
its fractional bandwidth is around 66%.

In RPM imaging, the set of range points g, , extracted by
syx(X,Y,R') is used only in initial 3-D imaging. Fig. 13
shows the target points obtained by RPM for the ellipsoid
target, where the solid lines show the discrete expression of the
true ellipsoidal boundary. Here,a = 2.51,b = 1.54, ¢ = 1.0/,
6 = 0°, and the y-axis is rotated through 20°. According to
Fig. 13, the target points obtained by RPM cannot sufficiently
express the target image to recognize the original ellipsoidal
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Fig. 15. Target boundary points estimated by the RPM method for the torus
target in a noiseless situation. (a) Projection to the xy plane. (b) Cross section
of the y = 0 plane. Solid lines: discrete expression of the true boundary.
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Fig. 16. Expansion result of the proposed method for the torus target in a
noiseless situation. (a) Projection to the xy plane. (b) Cross section of the
y = 0 plane. Solid lines: discrete expression of the true boundary.

shape, while a highly reconstruction accuracy is provided. This
is because the target is located from the sensor location with
a significant distance around 6/, and this leads to smaller
aperture angle. On the contrary, Fig. 14 shows the image
expansion result obtained by the proposed method. Here,
the elevation angle of each ellipsoid is limited to (¢ =
—7m /18). Also, the parameter o, = 0.254 and y = 0.31in (15)
are set. Fig. 14 indicates that the proposed method correctly
expands the target points obtained from the RPM imaging
points. Figs. 15 and 16 show the target points obtained by
RPM and the expansion expression of the proposed method,
respectively. The target is the torus shown in Fig. 1. According
to these figures, the proposed method significantly enhances
the imaging region of the torus boundary, which is dissimilar
to an ellipsoid. The expansion errors in Fig. 16 result from the
inaccurate estimation of the ellipsoid parameters from time-
series data, because each antenna receives multiple reflection
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Received signal in noiseless case
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Fig. 17. Example of the received signal. (a) Received signal in a noiseless
case. (b) Received signal in S/N = 20 dB. (c) Output of the matched filter
for a received signal illustrated in (b).

echoes within range resolution from the torus boundary, and
then, the expansion accuracy depends on the operational band-
width, naturally. It should be considered that an another cause
is the convex boundary based fitting with ellipsoid, namely,
the positive principal curvature, while the part of the torus
boundary has a negative principal curvature, such as the saddle
boundary. However, a largely deviated artifact of the part of
the expansion image is efficiently suppressed by introducing
postprocessing denoted in Step 7) in the proposed method.
It should also be noted that there is accuracy degradation
caused by the discrepancy between the reference signal and
the actual received signal in the ranging process with Wiener
filtering. However, such a kind of ranging inaccuracy is in
the order of 0.14, and affects both the RPM and the proposed
methods [21], [22]. To prevent this interference effect, the win-
dowing time span for extracting the time-series data should be
also appropriately determined. The average calculation times
for the original RPM and the proposed method after NN
learning are 0.2 and 30 s, respectively, using the Intel Xeon
CPU ES5-1620 v2 3.70-GHz processor, and such a calculation
time is hardly achieved by the conventional beamforming
or Kirchhoff migration algorithms in obtaining the 3-D full
image.

We now discuss a noisy situation. Each received signal
is subjected to Gaussian white noises sy, Sx,y, and sy y.
The signal-to-noise ratio (§/N) is defined as the ratio of the
peak instantaneous signal power in all polarization data to the
average noise power after applying a matched filter. Fig. 18
shows the RPM-obtained target points of a single ellipsoid
in the noisy case. The average S/N of s, , is approximately
20 dB and those of sy, and s, , are approximately 50 dB.
It should be noted that the above definition is the strictest
estimation for S/N, because the matched filter is the most
noise-robust filter, namely, this definition considers the locality
of the signal in both the time and frequency domains. Fig. 17
shows an example of received signals assuming S/N= 20 dB,
and it denotes that while the signal can be recognized after
applying the matched filter [denoted as Fig. 17(c)], the raw
received signal in Fig. 17(b) (before applying the matched
filter) is more noisy. Such an S/N level signal is usually
obtained in the real experiment assuming short-range sensing

(@) y/A o}tk

2 -1 xO/ 1 1 2
Fig. 18.  Target boundary points estimated by the RPM method for an
ellipsoid target in S/N = 20 dB. (a) Projection to the xy plane. (b) Cross
section of the y = O plane. Solid lines: discrete expression of the true
boundary.
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(b z/27
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Fig. 19. Expansion result of the proposed method for an ellipsoid target
in S/N = 20 dB. (a) Projection to the xy plane. (b) Cross section for the
y = 0 plane. Solid lines: discrete expression of the true boundary.

(distance from the sensor is within 5 m), as demonstrated
in [10].

Fig. 18 indicates that the RPM retains sufficient accuracy
even in a noisy situation, while the estimated points express
only a portion of the whole target shape. Fig. 19 shows
the expansion results of the proposed method. Although the
expansion accuracy is slightly worse than that in the noiseless
situation, the proposed method significantly expanded the
region that can be imaged, while maintaining an acceptable
accuracy. Figs. 20 and 21 show the results of imaging a torus
by RPM and by the proposed expansion method, respectively.
The approximate average S/N values of sy y, Sx x, and sy y
are 20, 32, and 32 dB, respectively. Comparing these results
with the noiseless case, the noise did not severely degrade
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Fig. 20. Target boundary points estimated by the RPM method for the torus
target in S/N = 20 dB. (a) Projection to the xy plane. (b) Cross section of
the y = 0 plane. Solid lines: discrete expression of the true boundary.
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Fig. 21.  Expansion result of the proposed method for the torus target in
S/N = 20 dB. (a) Projection to the xy plane. (b) Cross section of the
y = 0 plane. Solid lines: discrete expression of the true boundary.

. oeff
013

Fig. 22. Spatial relationship of the effective image area fz;ff for each target
point p¢.

the image expansion, and the expansion of the image is
retained.

Finally, the image expansion is quantitatively analyzed
by investigating the effective reconstruction image region,
namely, the expansion effect. For this evaluation, first, a whole
true target boundary denoted as QUi° is divided into small

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE II
VALUE OF P;[%] OF EACH METHOD
S/N o] 20dB(sz,y)
Target Ellipsoid | Torus Ellipsoid | Torus
RPM 159 % 72 % 16.3 % 7.6 %
Proposed 21.6 % 349 % 26.7 % 354 %

_ RPM(Noiseless)
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2 RPM(S/N=20dB) -
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Fig. 23. Number of the estimated target points of the ellipse target in noiseless
and noisy situations.

regions with the same area as AQI™®, (i = 1,2,..., Nur).
A whole target boundary region is expressed as

aiie = agpe. (17)
i

Also, the center point for the region Q™ is defined as pi™e.

Then, for the kth estimated target point denoted as p§*', the
estimated effective image area er‘f is defined as
szf — U Aggme Hpgrue _ PESt H < 517 (18)

L
where J,, is the threshold for extracting the effective image
region, which is empirically determined as J, = 0.24, in this
case. The effective image area Qeff composed of all target
points is defined as

Q°ff — Ufz;ff. (19)
k

As the evaluation value for the image expansion effect,

the image expansion ratio is defined as

S
P, = eff

Strue (20)
where Siue and Sefr denote the areas of QUi and Qetf
respectively. Fig. 22 illustrates for the effective image area szf
for each target point pzs‘t. The percentage image expansion
ratio P, in the absence and presence of noise is computed
for each method, and the results are summarized in Table II.
Clearly, the proposed method significantly expands the target
image, even when the target deviated from an ellipsoid.

However (see also Figs. 16 and 21), in the case of torus-
shaped target, there are nonnegligible errors in expansion.
Although it significantly enhances the image expansion ratio,
the expansion accuracy requires an additional evaluation cri-
terion. The error in image reconstruction is given by

e(pd) = glin Ipit = p"™c| (k=1,2,...,New) (D

true
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Fig. 24. Number of the estimated target points of the torus target in noiseless
and noisy situations.

TABLE III
RATE OF ESTIMATED TARGET POINTS THAT SATISFY ¢ < 0.24

S/N 00 20dB(sz,y)
Target Ellipsoid Torus Ellipsoid Torus
RPM 100 % 100 % 100.0 % 100 %

Proposed 100 % 94.3 % 100 % 90.6 %

where p'™"® denotes the true target points in discrete expression
with sufficiently dense sample and Ngg denotes the total
number of the estimated points. Figs. 23 and 24 plot the
number of estimated points with error e(p§*) in the expansions
of ellipsoidal and toroidal targets, respectively. While the
proposed method and RPM yield the same reconstruction
accuracy of ellipsoidal targets, RPM better reconstructs the
toroidal target because of the aforementioned interference
effect in the proposed method. However, the maximum error
in the toroidal target is within 1 1, and the apparent expanded
image does not markedly deviate from the actual target shape.
Table III lists the percentage of estimated target points sat-
isfying e(p§™) < 0.22 in the ellipsoidal and toroidal cases.
Combining this evaluation and the image expansion ratio
denoted as P, shown in Table II, the proposed method achieves
an effective target image expansion without sacrificing a seri-
ous accuracy degradation. Clearly, the percentage of accurately
estimated target points (expanded points) is reduced when our
method is applied to toroidal objects. This inaccuracy must be
addressed in our future work.

C. Evaluation of Edge-Preserving Property

To demonstrate the edge-preserving property of the pro-
posed method, this section introduces the example for the
cylinder-shaped target. Figs. 25 and 26 show the RPM-
obtained target points and the expanded image by the pro-
posed method, respectively. A noiseless situation is assumed.
As shown in Fig. 25, the RPM holds a high accuracy even
around the end of the cylinder target, but expresses a part of
the cylinder shape. Fig. 26 shows that our proposed method
expands the cylinder shape without over expansion of the edge
region, where the expansion area is limited along a larger
curvature direction in (13). The ratio that the reconstructed
points satisfy is that the errors less than 0.2 are 100% for both
the conventional and proposed methods. The image expansion
ratios denoted as P, are 6.9% for the original RPM and 14.4%
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Fig. 25.  Target boundary points estimated by the RPM method for the
cylinder target. Solid lines: discrete expression of the true boundary.
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Fig. 26.  Expansion result of the proposed method for the cylinder target.
(a) Projection to the xy plane. (b) Cross section of the y = 0 plane.

for the proposed method, respectively. These quantitative eval-
uations also show that our method successfully expands the
cylinder-shaped target, which guarantees an edge-preserving

property.

VI. CONCLUSION

This paper proposed a novel 3-D image expansion method
that incorporates the RPM method but exploits the fully
polarimetric data set. In a time-series data analysis of fully
polarimetric data, the co-polarization and cross-polarization
data were strongly correlated with the radius and rotation
angle of a single ellipsoid. By NN learning of the ellipsoid
parameters, the target was accurately estimated from the time-
series data only received by a single antenna. Next, to expand
the reproduced image, we combined the RPM method with
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single-ellipsoid estimation by the fully polarimetric data.
By using multiple partial ellipsoidal surfaces to the RPM target
points, we exploited the one-to-one correspondence between
the target and range points, which makes us possible to connect
the polarimetric data to each target point. In addition, to deal
with a target having edges or ridges, our method adaptively
change the expansion area with the curvature analysis provided
by the RPM feature. Finally, in FDTD simulations, we verified
that the image expansion ratio is much higher in the proposed
method than in the original RPM method, even for decid-
edly nonellipsoidal target shapes, without serious accuracy
degradation. The extrapolation level of the proposed method
depends on the parameter ¢r in (12), which determines the
extrapolation area of the partial ellipsoid. If we set ¢ larger,
there is a risk for generating a false image deviated from
the actual boundary. Then, the adjustment of the parameter
¢k is required to keep balance between the accuracy and
the expansion effect. As a result, the expansion effect in the
case of an ellipsoid target seems to be an interpolated image;
this is because the reflection strength from an ellipsoid is
comparatively smaller than that from a torus or cylinder object,
where the signal strength is the one factor to determine the size
of each fitted ellipsoid.

Note that the proposed method does not need to decompose
co-polarization and cross-polarization components from the
measured data, which are generally difficult in the nonplanar
incident-wave case. This is because this method requires a
relative quantity between the reference (training) signal and the
received signal, in terms of the x and y components of electric
fields. However, the accuracy of the polarimetric measurement
would affect the final image in both the RPM and proposed
method. It is also noted that the training data in the NN are
only limited to an ellipsoid, then, to deal with the general
boundary shape having a concave or saddle boundary; the
training data from the object with such negative principal
curvatures should be processed. It is our important future work.
Further investigation on such an effect should be done in our
future work through real experiments.
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