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Abstract— High-resolution, short-range sensors that can be
applied in optically challenging environments (e.g., in the pres-
ence of clouds, fog, and/or dark smog) are in high demand.
Ultrawideband (UWB) millimeter-wave radars are one of the
most promising devices for the above-mentioned applications.
For target recognition using sensors, it is necessary to convert
observational data into full 3-D images with both time efficiency
and high accuracy. For such conversion algorithm, we have
already proposed the range points migration (RPM) method.
However, in the existence of multiple separated objects, this
method suffers from inaccuracy and high computational cost
due to dealing with many observed RPs. To address this issue,
this letter introduces Doppler-based RPs clustering into the
RPM method. The results from numerical simulations, assuming
140-GHz band millimeter radars, show that the addition of
Doppler velocity into the RPM method results in more accurate
3-D images with reducing computational costs.

Index Terms— Multistatic Ultrawideband doppler radar, range
points migration (RPM), short-range sensing.

I. INTRODUCTION

SHORT-range, millimeter-wave radar systems have signif-
icant advantages including higher spatial resolution and

applicability to optically harsh environments (e.g., dark smog,
fog, or strong back light) and show promise for various
sensing applications such as collision-avoidance sensors for
automobiles and watch sensors for elderly or disabled persons
living alone. Recently, 140-GHz radar systems have attracted
attention, because this frequency minimizes the absorption of
moisture vapor, allowing the detection of targets from auto-
mobiles in high-moisture environments. Moreover, the size of
the transmitting and receiving modules can be considerably
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reduced, making the actual implementation of the system more
flexible. Various studies on 3-D imaging algorithms focused
on short-range sensing have been reported, most of which
are based on the delay-and-sum (DAS) approach, for exam-
ple, beamforming, time-reversal algorithms [1], and range
migration methods [2] or Kirchhoff migration [3]. However,
these studies required high computational costs to obtain full
3-D voxel images and also suffered from limited accuracy for
objects with continuous boundaries because of the pointwise
target assumption.

To address these issues, a nonparametric, fast, 3-D imaging
method called shape estimation algorithm based on boundary
scattering transform and Shape Estimation Algorithm based
on Boundary scattering transform and Extraction of Directly
scattered waves was developed based on reversible transforms
between the time delay and the target boundary [4]. How-
ever, this method has fundamental drawbacks; for example,
it requires a range point (RP) connection procedure during
preprocessing, which is difficult in richly interfered situations.
The RPs migration (RPM) method was developed as a promis-
ing method for solving this problem [5]. This method achieves
a batch conversion from RPs (a set of antenna location and
observed RPs) to scattering center points with one-to-one cor-
respondence. The RPM method converts each RP (referred to
as MainRP) to each scattering center by assessing the focusing
degree using all surrounding RPs (called Sub RPs). Notably,
this method resolves an inherent paring problem between the
range and direction of arrival using a Gaussian kernel-based
statistical approach. Thus, the RPM is free from complicated
preprocessing involving connecting or paring RPs. This feature
confers the significant advantages of both lower computational
cost and higher accuracy for locating scattering centers on
continuous boundaries, even in richly interfered cases.

Based on the above-mentioned merits, the RPM method
has been successfully applied to short-range sensing issues,
including the experimental validation [6], the through-the-wall
extension [7], or the 3-D ultrasonography imaging issues [8].
In addition, the millimeter radar application assuming
140-GHz band UWB signal has been investigated using a
multistatic configuration [9]. The multistatic configuration
considerably reduces the time required for data acquisition
compared with the radar scanning model, which is necessary
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Fig. 1. System model.

for achieving real-time imaging. However, when a sensor
receives many reflection echoes, assuming multiple objects
or objects with complicated shapes, this method suffers from
large computational cost and inaccuracy. This occurs because
the RPM assesses a focusing degree using all surrounding
RPs (called SubRPs) during the conversion from targeted
RPs (called Main RPs) to scattering points, and SubRPs
might include unnecessary one. To improve the efficiency and
accuracy of the RPM method, this letter introduces a Doppler
velocity-based RP clustering algorithm that enhances imaging
accuracy by selecting an appropriate set of SubRPs. While
Doppler-based data clustering or separation has been demon-
strated in lots of studies, there are no investigations for incor-
porating the RPM for improving both computational efficiency
and accuracy. Furthermore, the proposed method can associate
a Doppler velocity with each scattering center, which greatly
assists in human body recognition as demonstrated in [10].
The results obtained from numerical simulations assuming the
140-GHz band UWB radar system show that the proposed
method considerably improves both computational cost and
accuracy for 3-D imaging, where the effective imaging points
also increases by decomposing the multiple echoes within the
same range gate by discriminating the Doppler frequency.

II. SYSTEM MODEL

Fig. 1 shows the system model. The model assumes that
each target has an arbitrary 3-D shape with a clear boundary
and a unique velocity. Antennas are arranged in an array on
the y = 0 plane to form a multistatic radar configuration. The
locations of the transmitting and receiving antennas are defined
as LT = (XT , 0, ZT ) and L R = (X R, 0, Z R), respectively.
For each combination of LT and LR, the recorded electric
field is denoted as s′(LT, LR, t, τ ), where t denotes a fast
time and τ denotes a slow time sampled by the pulse repetition
interval. s(LT, LR, t, τ ) is the output of the Wiener filter of
s′(LT, LR, t, τ ) calculated as

s(LT, LR, t, τ ) =
∫ ∞

−∞
W (ω)S′(LT, LR, ω, τ )ejωt dω (1)

where S′(LT, LR, ω, τ ) is the form of Fourier transform of
s′(LT, LR, t, τ ) as to t . W (ω) is defined as

W (ω) = Sref (ω)∗

(1 − η)S2
0 + η|Sref(ω)|2 S0 (2)

where η = 1/(1 + (S/N)−1), and Sref(ω) is the reference sig-
nal in the frequency domain, which is the complex conjugate
of that of the transmitted signal. S0 is a constant for dimension
consistency. This filter is an optimal mean square error linear
filter for additive noises. Since we need to deal with multiple
reflection signals from multiple objects, it is quite difficult to
determine optimal η, and so an appropriate η is determined
empirically. s(LT, LR, t, τ ) is converted to s(LT, LR, R, τ ),
using R′ = ct/2 with the radio wave speed c. Then, the
range-Doppler signals as S(LT, LR, R′, V ′

D) is obtained by
using the 1-D Fourier transform of s(LT, LR, R′, τ ) as to τ .
q ≡ (LT, LR, R, VD)T is defined as the RP, which is extracted
from the local maxima of S(LT, LR, R′, V ′

D) regarding to R′
and V ′

D as

∂|S(LT, LR, R′, V ′
D)|/∂ R′ = 0

∂|S(LT, LR, R′, V ′
D)|/∂V ′

D = 0
|S(LT, LR, R′, V ′

D)| ≥ α max |S(LT, LR, R′, V ′
D)|

⎫⎬
⎭ . (3)

This letter assumes that each RP is assigned to each scattering
center on target boundary, and the conversion from the RPs to
target boundary points is regarded as an imaging process.

III. CONVENTIONAL METHODS

Various methods for the reconstruction of target shapes
in short-range 3-D imaging have been proposed based on
the DAS approach, including beam-forming and Kirchhoff
migration. Although the DAS-based methods provide accurate
images of pointwise targets, they cannot offer sufficient accu-
racy for nonpointwise targets; moreover, the computational
cost becomes enormous in 3-D imaging due to the signal
synthesizing approach with all received signals in each voxel
evaluation.

The RPM method has been developed to overcome the
above-mentioned issues [5], and has been extended to the
multistatic observation model [9]. This method assumes that a
target boundary point exists on an ellipsoid with focal points
LT and L R and major radius R. To extract the target point, this
method assumes that the actual target boundary point should
be included in all the possible intersection points determined
by other RPs. To determine a target point p̂(qi ) corresponding
to RP q i , this method extracts the optimal intersection points
by assessing the spatial accumulation of intersection points
calculated by other RPs (called SubRPs) as

p̂(qi ) = arg max
pint(q i ;ql ,qm)∈Pi

∑
(q j ,qk)∈Qall

g(qi ; q j , qk)

× exp

{
−|| pint(qi ; q j , qk) − pint(qi ; ql , qm)||

2σ 2
r

}
.

(4)

Here, pint(qi ; q j , qk) denotes the intersection points among
the three ellipsoids, which is determined by the RPs qi , q j ,
and qk ; Pi denotes a set of these intersection points; and σr is
determined considering the spatial density of the accumulated
intersection points. Qall denotes a set of all RPs. The weighting
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Fig. 2. RPs clustering in RPM scheme.

function g(qi ; q j , qk) is defined as

g(qi ; q j , qk) = s(q j )exp

{
− D

(
q i , q j

)
2σ 2

D

}

+ s(qk)exp

{
− D

(
qi , qk

)
2σ 2

D

}
(5)

where σD is determined empirically and D(q i , q j ) denotes the
actual separation of the two sets of transmitting and receiving
antennas as

D(q i , q j ) = min(‖LT,i − LT, j‖2 + ‖LR,i − LR, j‖2,

‖LT,i − LR, j ‖2 + ‖LR,i − LT, j‖2). (6)

Note that, in (4), the optimal combination of ql and qm is
determined by full search for all possible combinations.

Notably, in this method, each RP qi is related to a target
point p(qi ) with one-to-one correspondence. The RPM does
not require the connection of RPs before processing, allowing
the accurate conversion from RPs to target points, even in
richly interfered cases. The RPM evaluates the degree of
accumulation of the intersection points of ellipsoids for a
targeted RP as q i (named as Main RP) defined by other
surrounding RPs (named as SubRPs), q j , and qk in (4). Fig. 2
shows an example conversion between target points and RPs
in a multistatic configuration; the bottom figure shows the
cross-sectional view at (XT, ZT, ZR) = const. In this case,
each antenna receives a maximum of three RPs, and the
RPM converts a Main RP qi to target boundary point using
surrounding all the Sub RPs. However, in the presence of
multiple objects, the increasing number of SubRPs seriously
increases the computational cost due to the large number of
intersection points of the three ellipsoids, which must all be
numerically solved. In addition, in the case of multiple objects,
the combination of RPs from different targets introduces
inaccuracy in the calculation of the actual scattering point.

Fig. 3. Example for Doppler-based RP clustering.

IV. PROPOSED METHOD

Range clustering represents a promising solution for the
above-mentioned issues. In terms of computational efficiency
and reconstruction accuracy, the SubRPs are included in the
same target cluster of Main RP. That is, if the Main RP caused
from the nth target, should be processed using only the SubRPs
from the nth target. Fig. 2 shows an example of correctly
clustered RPs. As shown in Fig. 2, only a set of SubRPs (red
broken circles) is necessary to evaluate Main RP (red solid
circle), and other RPs may introduce error into the final image.
However, it is generally difficult to cluster the RPs without
a priori knowledge of target shape or location, because the
RPs assuming multiple scatter are overlapped on data space
as Fig. 2.

To appropriately cluster SubRPs for each Main RP without
a priori information about target shape, this letter introduces
Doppler-based RPs clustering as a preprocessing step within
the RPM method. The new method assumes that a group of
RPs generated from an object has almost the same Doppler
velocity, and that each RP can be clustered by its associated
Doppler velocity before the RPM process. This method intro-
duces the following criteria for qi (denoted as Main RP) and
q j (denoted as SubRPs):

ε(qi , q j ) ≡ |VD,i − VD, j |. (7)

The set of SubRPs that satisfies ε(qi , q j ) ≤ εth is denoted
as Qi , and the target point p̂(q i ) is calculated in (4), switching
from Qall to Qi . Fig. 3 shows the example of Doppler velocity-
based RPs clustering. After extracting range-Doppler map for
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TABLE I

DOPPLER VELOCITIES FOR EACH PART OF HUMAN BODY

each antenna combination as LT and LR, the local max-
ima of |S(LT, LR, R′, V ′

D)| are extracted as Doppler velocity
associated RPs. This method confers an additional advantage;
multiple RPs within the same range gate but with different
Doppler velocities can be decomposed, increasing the effective
target points.

The procedure of the proposed method is as follows.
Step 1: Observed data are acquired as the outputs of the

Wiener filter s(LT, LR, R′, τ ).
Step 2: S(LT, LR, R′, V ′

D) are obtained by applying the
1-D discrete Fourier transform to s(LT, LR, R′, τ )
in terms of τ .

Step 3: RPs qi are extracted from local maxima
|S(LT, LR, R′, V ′

D)| as to R′ and V ′
D, and a set of

all RPs is defined as Qall.
Step 4: RPs are clustered by the criteria expressed in (7)

as Qi .
Step 5: qi is converted to a target point p̂(qi ) by the RPM

using Qi in (4).
Step 6: For each target point p̂(q i ), the associated Doppler

velocity VD,i is calculated.

V. EVALUATION IN NUMERICAL SIMULATION

This section evaluates the performance of the original RPM
and the newly proposed method using numerical simulation.
The transmitting signal forms a pulse-modulated signal with
a center frequency of 140 GHz and a 10-dB bandwidth
of 10 GHz. The center wavelength λ is 2.1 mm, and the
theoretical range resolution in the air is 15 mm. The pulse
repetition interval is 37.5 μs, and the number of pulse hits
is 56. Thus, the Doppler velocity resolution is 0.5 m/s, and
the maximum unambiguous range is 20 m. It assumes that
the target is a human body-approximated as an aggregation
of 11 ellipsoids corresponding to the head, upper and lower
torsos, arms, and legs (Fig. 1). For simplicity, we consider the
stepping motion of human body at the same position, where
the Doppler velocity of each part is summarized as Table I.
The numbers of transmitting and receiving antennas are 4
and 25, respectively, and the minimum array spacing is 50
λ. The received time-series data are generated by geometrical
optics (GO) approximation without the consideration of mul-
tiple scattering among targets. The GO is the forward solver
based on higher frequency approximation, where the dominant
propagation path can be determined by the law of reflection in
optics [11]. The motivation for applying GO is that it requires
much less computational cost compared with other forward
solver, such as Finite Difference Time Domain or Method
of Moment methods, and we deal with smoothed surface

Fig. 4. Scattering center points obtained by the original RPM method in
noiseless case.

Fig. 5. Scattering center points obtained by the proposed method in noiseless
case.

target, the roughness of which is quite larger than the assumed
center wavelength (2 mm). Figs. 4 and 5 show the images
reconstructed by the original RPM and the proposed methods,
respectively. εth = 0.5 m/s is set in this case. The color of
each target point obtained by the proposed method indicates
the Doppler velocity. As in Fig. 4, there are some points largely
deviated from actual boundary, which are caused by evaluating
unnecessary SubRPs in (4). On the contrary, Fig. 5 shows
that the proposed method considerably increases the accurately
located scattering centers associated with Doppler velocity,
compared with those obtained by the original RPM. This
improvement occurred, because the RPs corresponding to each
part of the human body are correctly clustered by difference
in Doppler velocity. It should also be noted that the proposed
method decomposes multiple RPs included in the same range
resolution based on Doppler velocity; this increases the num-
ber of target points, which is another advantage of this method.
However, there are nonnegligible deviations from an actual
boundary for scattering center points reconstructed by both the
original and proposed RPM. These errors are mainly caused
by the interferences among reflection signals from different
parts in the same range gate, and then, to reduce these errors,
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Fig. 6. Cumulative distribution for the reconstruction error e in noiseless
case.

TABLE II

ACCURACY ANALYSIS AT S/N = 30 dB

it is promising to introduce a superresolution filter, such as
Capon or MUSIC algorithm, which has been demonstrated in
[12].

For the quantitative evaluation, the reconstruction error
denoted by e( pest

i ) is introduced as

e
(

pest
i

) = min
ptrue

‖ pest
i − ptrue‖2, (i = 1, 2, . . . , NT) (8)

where pest
i and ptrue are the locations of the i th estimated

point and the true target point (namely, the group of dis-
cretized points on ellipsoid surface with sufficiently dense
sample in this case), respectively, and NT is the total number
of pest

i . Fig. 6 shows the cumulative distribution for e( pest
i ) in

each method. The numbers of reconstructed points satisfying
e < 10λ(= 21mm) are 116 (41% of total points) for the
original RPM method and 441 (74% of total points) for the
new method. The calculation times using a Xeon 3.10-GHz
processor are 550 s for original RPM and 160 s for the new
method.

Performance evaluations in the noisy cases are described
as follows. To simulate a noisy situation, we added white
Gaussian noise to the received time-series data. Table II
denotes the average ratio for satisfying e < 10λ(= 21mm)
and that of the mean value of e for the original and new
methods in noisy situations at S/N = 30 dB, where each
quantity is averaged over 100 different noise patterns. S/N is
defined as the ratio of the peak instantaneous signal power
for all polarization data to the average noise power after
applying a matched filter. It should be noted that the above-
mentioned definition is the most strict estimation of S/N
and considers the locality of signal in both the time and
frequency domains, and the signals with S/N = 30 dB
are practically available by coherent integration procedure,
demonstrated in [12]. The results shown in Table II demon-
strate that our proposed method still retains more than 70%
points satisfying e < 10λ(= 21mm), which is improved
from that obtained by the original method as less than 50%.

Finally, it should be noted that, in the actual scenario, we
should consider the multiple reflection among objects, which
would incur an image distortion in any method. However, this
kind of distortion is predicted to be not so serious, because
the amplitude of higher order multiple reflections would be
considerably lower compared with that of direct scattering,
and a time gating process for such kind of multiple reflections
also could suppress the false image. It is also our future
work to discriminate the multiple reflection components by
recognizing Doppler velocities.

VI. CONCLUSION

This letter incorporated an RP clustering algorithm based on
Doppler velocity into the RPM method to achieve accurate and
high-speed 3-D imaging. The numerical simulation assuming
the 140-GHz band UWB radar system and the human body
imaging issue has demonstrated that the proposed method
remarkably enhances the number of accurately reconstructed
points associated with the Doppler velocity by decomposing
multiple RPs within the same range gate, while reducing the
required computational time compared with the conventional
RPM method. Further acceleration of this method would be
done by introducing more efficient algorithm to search the
optimal intersection points in (4), while the present algorithm
relies on full search of possible intersection points.

REFERENCES

[1] A. J. Devaney, “Time reversal imaging of obscured targets from multista-
tic data,” IEEE Trans. Antennas Propag., vol. 53, no. 5, pp. 1600–1610,
May 2005.

[2] J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-D radar imaging using
range migration techniques,” IEEE Trans. Antennas Propag., vol. 48,
no. 5, pp. 728–737, May 2000.

[3] F. Soldovieri, A. Brancaccio, G. Prisco, G. Leone, and R. Pierri,
“A Kirchhoff-based shape reconstruction algorithm for the multimono-
static configuration: The realistic case of buried pipes,” IEEE Trans.
Geosci. Remote Sens., vol. 46, no. 10, pp. 3031–3038, Oct. 2008.

[4] T. Sakamoto and T. Sato, “A target shape estimation algorithm for pulse
radar systems based on boundary scattering transform,” IEICE Trans.
Commun., vol. E87-B, no. 5, pp. 1357–1365, Jul. 2004.

[5] S. Kidera, T. Sakamoto, and T. Sato, “Accurate UWB radar three-
dimensional imaging algorithm for a complex boundary without range
points connections,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 4,
pp. 1993–2004, Apr. 2010.

[6] R. Salman and I. Willms, “3D UWB radar super-resolution imaging for
complex objects with discontinous wavefronts,” in Proc. IEEE Int. Conf.
Ultra-Wideband (ICUWB), Oct. 2011, pp. 346–350.

[7] S. Kidera, C. Gao, T. Taniguchi, and T. Kirimoto, “Ellipse based
image extrapolation method with RPM imaging for through-the-wall
UWB radar,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2015, pp. 385–388.

[8] H. Taki, S. Tanimura, T. Sakamoto, T. Shiina, and T. Sato, “Accurate
ultrasound imaging based on range point migration method for the
depiction of fetal surface,” J. Soc. Ultrason. Med., vol. 42, no. 1,
pp. 51–58, Jan. 2015.

[9] Y. Sasaki, S. Kidera, and T. Kirimoto, “Accurate 3-D imaging method
based on range points migration for 140GHz-band radar,” in Proc. IEEE
Int. Conf. Ubiquitous Wireless Broadband (ICUWB), Oct. 2015, pp. 1–5.

[10] Y. Kim and H. Ling, “Human activity classification based on micro-
Doppler signatures using a support vector machine,” IEEE Trans.
Geosci. Remote Sens., vol. 47, no. 5, pp. 1328–1337, May 2009.

[11] V. U. Zavorotny and A. G. Voronovich, “Comparison of geometric
optics and diffraction effects in radar scattering from steep and breaking
waves,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2007, pp. 1350–1353.

[12] S. Kidera, T. Sakamoto, and T. Sato, “Super-resolution UWB radar
imaging algorithm based on extended Capon with reference sig-
nal optimization,” IEEE Trans. Antennas Propag., vol. 59, no. 5,
pp. 1606–1615, May 2011.


