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Abstract

Microwave non-destructive testing (NDT) is promising for

non-contact and speedy survey for air cavity or metallic

rust buried into concrete media in tunnel or highway. As

an imaging algorithm for the above application, the dis-

torted born iterative method (DBIM) is one of the promising

options to retrieve not only target’s location but its dielec-

tric property, which is useful for material characterization.

However, in an actual NDT scenario, scattered data from

limited direction are available, which makes the problem

more ill-posed. In this paper, the incorporation algorithm

with radar approach as the range points migration (RPM)

method, which offers a prior estimate of the region of inter-

est (ROI), substantially reduces the number of unknowns

in the DBIM. Furthermore, the variational Bayesian ex-

pectation maximization (VBEM) algorithm is introduced in

the above incorporation. The finite-difference time-domain

(FDTD) based numerical simulations demonstrate that the

proposed method achieves faster convergence and more ac-

curate results compared with that without the prior ROI es-

timation.

1 Introduction

Microwave non-destructive testing (NDT) techniques have

a great attentions as speedy and large-scale non-contact

screening technique for air crack or corrosion detection

for aging transportation infrastructure e.g. tunnel or road,

to avoid a voluntary collapse or catastrophe caused by

an earthquake because it achieves a sufficient penetration

depth and higher range resolution using ultra-wideband

(UWB) pulse. Microwave NDT technique has some advan-

tages from ultrasonic or hammering test because they are

with contact measurement to avoid a large propagation loss

in the air.

A number of microwave imaging techniques have been de-

veloped, which are categorized into two types. One is a

confocal (radar) approach, which estimates targets shape

and location based on the delay and sum (DAS) approach

[1]. The other type is based on the inverse scattering anal-

ysis [2], which provides an estimate of dielectric profile by

the inverse solution for the Helmholtz type domain integral

equation, but it is non-linear and ill-posed nature in typical

case. Furthermore, focusing on the NDT scenario, an omni-

directional observation, i.e., tomographic measurement, is

hardly achieved, and it suffers from an extreme lack of data

amount to get an accurate profile.

Recent studies [3] has revealed that various types of rust,

e.g. black rust, salt rust or red rust, have different dielectric

property, and the dielectric characterization is much impor-

tant for recognizing whether metallic corrosion or air crack.

According to this background, we focus on one of the most

promising inverse scattering algorithm as the distorted born

iterative method (DBIM) [2], which has been demonstrated

that it retrieves high contrasted dielectric profile in vari-

ous type of target or observation model. However, in the

NDT model, the DBIM also suffers from the difficulty for

a lack of data, and a large number of unknowns should be

processed for large scale searching area, which incurs high

computational cost and inaccuracy.

This paper incorporates radar imaging into the inverse scat-

tering analysis to overcome the above-mentioned difficulty

in the DBIM, in more particular manner, the region of inter-

est (ROI) in the DBIM formulation is focused on the vicin-

ity around object, which should be estimated by the radar

imaging algorithm. As a promising radar imaging method,

we introduce the range points migration (RPM) method, the

effectiveness of which have been demonstrated in some lit-

eratures [4]. In particular, the literature [5] has verified that

the RPM based method accomplishes the 1/100 wavelength

order accuracy for buried object shape estimation in the

NDT model. A prior estimate of the ROI by the RPM, the

number of unknowns processed in DBIM are considerably

downsized, which contributes to offer more accurate and

rapid reconstruction of dielectric profile of targets, even in

a seriously ill-posed situation. There are some options how

to incorporate the prior ROI into the DBIM, and in this pa-

per, we introduce the variational Bayesian expectation max-

imization (VBEM) algorithm [6] for it. The advantage for

the use of VBEM is that it dynamically updates the ROI in

each iterative step in the DBIM, and the hyper-parameters

with respect to the ROI distribution is automatically deter-

mined by the EM algorithm. The finite-difference time-

domain (FDTD) based numerical tests, assuming the typ-



ical NDT situation, where air cavity and some types of

metallic rusts are buried into concrete media, demonstrates

that the proposed method achieves faster and more accurate

reconstruction compared with that by the DBIM without the

ROI prior.

2 Observation Model and Data

Figure 1 shows the observation model. It assumes that a

background media is homogeneous, low lossy, and non-

dispersive dielectric media. A number of the transmitting

and receiving antennae are arranged in front of background

media. Note that, the relative permittivity and conductivity

of background media are not given. The filter output (e.g.
matched filter) at antenna location rrr is defined as E(rrr,R),
where R = ct/2 expressed by time t and c is the speed of

light in air. Range points extracted from local maxima of

E(rrr,R) as to R are divided into two groups. one is defined

as qqq1,i ≡ (rrr1,i,R1,i) where each member having maximum

E(rrr,R) as to R. The remaining range points are categorized

into qqq2,i ≡ (rrr2,i,R2,i).

3 Method

3.1 Distorted Born Iterative method (DBIM)

A number of studies claimed that the DBIM is one of most

promising approach for complex permittivity reconstruc-

tion, in biomedical or subsurface imaging applications. The

forward scattering problem is described by the Helmholtz

type domain integral as:

ΔE t(ω;rrrt ,rrrr)≡ E t(ω;rrrt ,rrrr)−E t
b(ω;rrrt ,rrrr)

= ω2μ
∫

Ω
Gb(ω;rrrr,rrr′)E t(ω;rrrt ,rrr′)O(r′)drrr′.

(1)

where E t(ω;rrrt ,rrrr) denotes the observed total field at an-

tenna location rrrr which is transmitted from rrrt , E t
b(ω;rrrt ,rrrr)

is the total field in assuming the specific background media

with complex permittivity εb(rrr), Gb(ω;rrrr,rrr′) is the back

ground Green’s function, Ω is the region of interest (ROI).

O(rrr) ≡ εr(rrr)− εb(rrr) is the object function where εr(rrr) is

complex permittivity of scatters. Under the Born’s approxi-

mation, E t(ω;rrrt ,rrr′)�E t
b(ω;rrrt ,rrr′) holds, and the following

relationship is derived:

ΔE t(ω;rrrt ,rrrr)� ω2μ
∫

Ω
Gb(ω;rrrr,rrr′)E t

b(ω;rrrt ,rrr′)O(r′)drrr′.

(2)

The general DBIM algorithm iteratively updates εb(rrr),
Gb(ω;rrrr,rrr′) and E t

b(ω;rrrt ,rrr′) in order to minimize

∑rt ,rr |ΔE t(ω;rrrt ,rrrr)|2.

A lot of literature demonstrated that the DBIM offers accu-

rate dielectric profiles even with high contrast object under

various tomographic observation model, however, in most

case of NDT scenario, a tomographic (omni-directional)

observation is hardly achieved, namely, a limited direc-

tional data are available. Thus, it makes the problem more
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Figure 1. Observation model (a) relative permittivity and

(b) conductivity
Table 1. Dielectric properties and size of background

medium and each target.

εr σ [S/m] size [mm]

Background medium 7.0 0.001 1006×360

Black rust (#1) 12.58 1.31 6×6

Salt rust (#2) 5.33 0.29 10×6

Hydrated black rust (#3) 11.28 1.14 22×4

Air cavity (#4) 1 0 8×6

Red rust (#5) 8.42 0.57 6×6

ill-posed, and extremely difficult to obtain a meaningful so-

lution.

3.2 Incorporation with RPM and DBIM

To overcome the above difficulty, the incorporation with the

RPM based ROI determination into the DBIM method is

presented in this paper. The RPM converts a group of ob-

served ranges to each corresponding scattering center by the

Gaussian kernel estimator. The details of the RPM method

is described in [4]. Assuming the actual scenario, a dielec-

tric property of background media is roughly estimated by

the DBIM by assuming that a whole ROI is homogeneous.

Then, the RPM determines each scattering center corre-

sponding to range point qqq2,i assuming homogeneous media

with the estimated relative permittivity of the background

media.

The RPM image is formed as an aggregation of scatter-

ing center points, then, we should consider how to imple-

ment the RPM image into the ROI (finite area) in the DBIM

framework. Here, we consider two types of implementation

approaches, one is based on fixed ROI, and the other is dy-

namical ROI determination based on Bayesian framework.

3.2.1 CGLS based optimization

In this case, for each scattering center point, the small size

of ROI is given as Ωobj
i , where i denotes the index of scat-

tering center. The DBIM reconstructs the dielectric profile

by (2). The optimization is done by the CGLS algorithm,

where the ROI, namely Ωobj
i is fixed through the optimiza-

tion process.

3.2.2 VBEM based optimization

The previous approach is based on the fixed ROI in the iter-

ative process in DBIM, and thus, the accuracy of the DBIM
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Figure 2. ROI (green dots) limited by the RPM imaging

points (red solid circles), (a) fixed ROI case, (b) variant ROI

case.

significantly depends on the initial estimate of the ROI. To

avoid such initial value dependency, another approach is in-

troduced so that the ROI is updated in the iterative process

in DBIM. As a suitable approach for this purpose, we focus

on the Bayesian framework, where the ROI is given as the

prior distribution. Let the following conditional probability

density function (PDF) about the total field EEE and the object

function OOO as normal distributions:

p(EEE|BOOO,β ) = N (EEE|BBBOOO,β−1III), (3)

p(OOO|ααα) =
N

∏
i=1

N (Oi|0,αi
−1), (4)

where N is total number of unknowns in

Ω, EEE,BBB and OOO are discritized version of

ΔE t(ω;rrrt ,rrrr),ω2μGb(ω;rrrr,rrr′)E t
b(ω;rrrt ,rrr′) and OOO(rrr′),

β and ααα ≡ [α1, . . . ,αN ] are the precision parameters (hyper

parameters) in each normal distribution. Here, the PDF of

ααα is defined using the Gamma priors as:

p(ααα) =
N

∏
i=1

Gamma(αi|ai,bi) =
N

∏
i=1

bai
i

Γ(ai)
αai−1

i e−biαi , (5)

where Gamma(x|a,b) is the gamma distribution with the

parameters a and b. The maximum a posteriori (MAP) es-

timates is formulated as

ÔOO = arg max
OOO

p(OOO|ααα). (6)

To solve the above optimization problem, the VBEM algo-

rithm iteratively updates ŌOO as:

ŌOO = β (ĀAA+βBBBT BBB)−1BBBT EEE, (7)

(8)

where

ĀAA = diag(ᾱαα), (9)

ᾱi =
ai +

1
2

bi +
1
2 (Ōi

2
+Si,i)

, (10)
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Figure 3. Reconstructed relative permittivity for air cavity

(#4), (a) Original profile, (b) Original DBIM, (c) Proposed

method with CGLS, (d) Proposed method with VBEM

(red line: true ROI boundary).
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Figure 4. Reconstructed conductivity for red rust (#5), (a)

Original profile, (b) Original DBIM, (c) Proposed method

with CGLS, (d) Proposed method with VBEM (red line:

true ROI boundary).

ᾱαα ≡ [ᾱ1, ..., ᾱN ], and Si,i is i-th diagonal element of SSS.

In this framework, it is well-known fact that the region with

large ᾱαα is regarded as low probability area of target exist-

ing. Focusing on this fact, initial value of ᾱi is given by the

following equation exploiting the RPM results:

ᾱi =

{Nrpm

∑
m=1

FmN (rrri|p̂pp(qqq2,m),SSSr)

}−1

, (11)

where rrri is i-th cell in ROI, SSSr is diagonal matrix which

determines the intensity of αi around ecah scatterig point,

p̂pp(qqq2,m),m = 1, . . . ,Nrpm is the estimated scattering points

by RPM, and Fm is given by

Fm = ∑
j,k

g(qqq2,m;qqq2, j,qqq2,k)× exp

{
−‖pppint

m, j,k − p̂pp(qqq2,m)‖2

σ2
r

}
.

(12)

where g(qqq2,m;qqq2, j,qqq2,k) is the weighting function [4], pppint
i, j,k

is the intersection point among the three orbits of propa-

gation paths and σr is a constant. In each DBIM iterative

sequences, ᾱαα , that is, the ROI is updated.

4 Numerical Test

This section describes the two-dimensional (2-D) FDTD

based numerical simulation to test the performance of each

method. The NDT observation model illustrated in Fig.

1 is assumed. 27 set of transmitting and receiving an-

tenna are linearly arranged with 30 mm equally spacing,

the location of which is 158 mm far from the concrete sur-

face. The transmitted signal is formed Gaussian-modulated

pulse with 2.45 GHz center frequency and 2.7 GHz band-

width. Five different types of targets, as air cavity and dif-

ferent types of metallic rusts, are buried into concrete me-

dia. Each target size and its dielectric property is summa-

rized in Table 1, where the dielectric property of rust is re-

ferred from [3]. The cell size of both the forward (FDTD)



Table 2. The estimated mean relative permittivity and con-

ductivity (εr,σ ) of each target for each method.

Original DBIM DBIM w RPM (CGLS) DBIM w RPM (VBEM)

#1 (12.58, 1.31) (7.20, 0.46) (7.55, 0.28) (7.58, 0.27)

#2 (5.33, 0.29) (7.08, 0.07) (6.44, 0.10) (6.65, 0.10)

#3 (11.28, 1.14) (7.32, 0.22) (7.30, 0.39) (7.04, 0.47)

#4 (1, 0) (6.99, 0.35) (4.89, 0.00) (4.85, 0.01)

#5 (8.42, 0.57) (7.13, 0.00) (7.18, 0.13) (7.60, 0.24)

and inverse (DBIM) solutions is 2 mm square. The total

number of unknowns including the concrete (background)

media is 40240.

As to the initial estimation of the background property de-

termined by the DBIM, we obtained the estimations of rel-

ative permittivity is 7.1547 and the conductivity is 0.0021

S/m. Figure 2 shows the scattering center points estimated

by the RPM, in two different algorithms for ROI determi-

nations described as in Sec. 3.3.1 and Sec. 3.3.2. Here, the

CGLS based algorithm, the ROI for each scattering center

is determined as the region spanned by 5× 5 cells, and is

fixed through the DBIM iteration. In the VBEM based al-

gorithm, the ROI is determined by using Eq. (11). The

number of unknowns for the original DBIM, the proposed

method with CGLS and that with VBEM are 80480, 960

(98.8 % reduced) and 1782 (97.8 % reduced), respectively.

Figures 3 and 4 show the reconstructed dielectric maps for

air cavity and red rust, by the original DBIM method, where

the whole ROI area is processed, the proposed method with

CGLS, and that with VBEM. These figures clearly shows

that the proposed method enhances reconstruction accuracy

compared with the original DBIM. Furthermore, Fig. 3 and

4 show that the VBEM based algorithm achieves more ac-

curate reconstruction with respect to both dielectric prop-

erty and target’s shape compared with the CGLS based al-

gorithm.

For quantitative analysis of each method, Table 2 shows

the estimated mean relative permittivity and conductiv-

ity of each target. This result demonstrate that the pro-

posed method incorporating the RPM and DBIM signif-

icantly enhances the reconstruction accuracy. Further-

more, Fig. 5 shows the residual of cost functions as

∑rt ,rr |ΔE t(ω;rrrt ,rrrr)|2 for each iteration number. This re-

sults also shows the VBEM based algorithm achieves faster

convergence, because this algorithm exploits prior informa-

tion about unknowns in ROI given by RPM and updates

ROI in each DBIM iteration.

5 Conclusion

This paper proposed an efficient inverse scattering algo-

rithm by incorporating the RPM into the DBIM for the mi-

crowave NDT via VBEM based Bayesian approach. To

achieve the above incorporation, the RPM results are ex-

ploited as a prior estimate of the ROI in the DBIM, which

contributes a remarkable reduce of a number of unknown

in DGIM. In addition, the two types of the ROI implemen-

tation based on CGLS and VBEM are presented, where the
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Figure 5. The residual of cost functions as

∑rt ,rr |ΔE t(ω;rrrt ,rrrr)|2 for each iteration number.

VBEM enables us to update the ROI in the DBIM itera-

tive sequences. The FDTD-based numerical simulations,

assuming NDT observation model, demonstrated that the

ROI determination by RPM improved reconstruction accu-

racy, even for the extremely ill-posed scenario, and expands

the application range of the inverse scattering analysis.
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