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Low Complexity Algorithm for Range-Point
Migration-Based Human Body Imaging

for Multistatic UWB Radars
Yoshiki Akiyama, and Shouhei Kidera , Member, IEEE

Abstract— High-resolution, short-range sensors that can be
applied in optically challenging environments (e.g., in the pres-
ence of clouds, fog, and/or dark smog) are in high demand for
various applications. Ultrawideband radar is a promising sensor
that is suitable for short-range surveillance or watching sensors.
Range-point migration (RPM) has been recently established as a
promising imaging approach to achieve accurate and real-time
3-D imaging. However, when objects with many scattering points
are dealt with, such as a human body, RPM suffers from high
computational costs. In this letter, we propose an algorithm with
a lower complexity for an RPM-based 3-D imaging method by
introducing a sampling-based scattering center extraction with
a simplified evaluation function, in which an efficient sample
pattern is provided by a golden ratio. The results from a finite-
difference time-domain-based numerical test, which introduces
a realistic human body object, demonstrate that our proposed
method remarkably reduces the computational cost without
sacrificing the reconstruction accuracy.

Index Terms— 3-D imaging, multistatic observation model,
range-point migration (RPM), short-range sensor, ultrawideb-
and (UWB) radar.

I. INTRODUCTION

ULTRAWIDEBAND (UWB) radars offer significant
advantages, such as higher range resolution and

applicability to optically harsh environments (e.g., dense
fog, dusty air, or through-the-wall conditions). The above-
mentioned advantages form the basis for various short-range
sensing applications such as human body detection in visually
blurred or through-the-wall scenarios and observation sensors
that address the privacy issues of elderly or disabled persons
living alone. Various studies have been conducted on 3-D
imaging methods that focus on short-range radars. The
major approaches in 3-D imaging are primarily based on
the delay-and-sum (DAS) algorithms, such as synthetic
aperture radar [1], Kirchhoff migration approaches [2], the
diffraction tomography (DT) method [3], or compressed
sensing (CS)-based approaches [4] However, DAS-based
methods usually require a high computational cost to obtain
a full 3-D image, and they suffer from inaccuracies in the
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reconstructions of objects with continuous boundaries (not
pointwise shapes), that are located close to the sensors. The
fast DT algorithm [3] achieves a real-time 3-D imaging by
the fast Fourier transform-based acceleration on the 2-D array
data. However, it requires a data interpolation process in the
wavenumber domains, and a coarse array configuration can
come up with an ambiguous image. In addition, while the CS-
based method avoids the ambiguity responses due to a grating
lobe, and obtains a higher resolution image, it often requires
a numerical solution for large-scale optimization problems,
thus, incurring an extremely expensive computational cost to
obtain a full 3-D image.

As a promising solution to the above-mentioned problem,
the range-point migration (RPM) method has been developed,
which offers several advantages in terms of accuracy and low
computational complexity in 3-D imaging. It is also acceptable
for coarse-array data resulting from an incoherent process.
This method is based on the batch conversion algorithm from
range point (RP), which is defined as a set of each observed
time delay and antenna location, to a corresponding scattering
center point [5]. The notable feature of this method is its
effective solution to the joint problem between the range and
the direction of arrival (DOA) using a Gaussian kernel-based
DOA estimator. Furthermore, it is free from complicated pre-
processing for connecting or paring RPs. A number of studies
have demonstrated the effectiveness of this method in different
observation models, where it achieves a higher reconstruction
accuracy even in cases with high interference [6], [7]. In
particular, Sasaki et al. [7] deal with the imaging issue of
a human body by exploiting micro-Doppler discrimination to
enhance the accuracy and computational efficacy of the RPM.
Nonetheless, the RPM still suffers from an inherent problem
in which the computational complexity of the original RPM
algorithm drastically increases according to the number of
RPs, because it requires the calculation of the intersection
points of three spheroids for all possible combinations of the
measured RPs.

In order to avoid an explosive increase in the computational
cost in the original RPM, in this letter, we introduce a sampled-
point extraction algorithm for which the basic idea was
recently proposed in [8]. First, this method retains a number
of discrete points, which are sampled on an assumed spheroid
obtained by each RP. Then, the scattering center is extracted
from these sampled points and not from the intersection points.
In addition, this method adopts the golden ratio sampling
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Fig. 1. Observation model assuming the 1-D MIMO array with linear
scanning.

pattern as one of the most effective spatial patterns with
the least gaps. In order to make the scheme suitable, this
method further introduces a simplified evaluation function for
a Gaussian kernel estimator, which requires a much less com-
putational complexity cost, even for a multistatic observation
model. The finite-difference time-domain (FDTD)-based 3-D
numerical simulations, which use a realistic human body
dielectric phantom, demonstrate that the proposed method
remarkably reduces the computational cost compared with the
original RPM method without sacrificing the reconstruction
accuracy.

II. OBSERVATION MODEL

Fig. 1 shows the observation model. The 1-D array, which
assumes a multiple-input multiple-output (MIMO) radar, along
the z-axis is scanned in the x-direction. The locations of
the transmitting and receiving antenna elements are defined
as LT = (XT , 0, ZT ) and LR = (XR, 0, ZR), respectively.
For each LT and LR combination, the recorded electric field
is denoted as s�(LT, LR, t), where t denotes a fast time.
s(LT, LR, t) denotes the output of the range extraction filter
of s�(LT, LR, t). s(LT, LR, t) is converted into s(LT, LR, R),
with R� = ct/2 using radio-wave speed c. q ≡ (LT, LR, R) is
defined as the RP, which is extracted from the local maxima
of LT, LR with respect to R.

III. CONVENTIONAL IMAGING METHODS

A. DAS-Based Method

Many studies on short-range radar imaging have been
conducted on the basis of the DAS approach, which is known
as SAR processing or multidimensional beamforming. Even
though the DAS-based methods provide noise robust and
accurate images, when a target is expressed as an aggregation
of points, they cannot offer a sufficient accuracy for continuous
boundaries because the DAS algorithm assumes that the scat-
tering point is invariant with respect to the observation point,
which is valid for a point-shaped target. Conversely, in the
case of a continuous-shaped boundary, the dominant scattering
center moves along its boundary and the above-mentioned
DAS method assumption or principle is invalid and yields an
inaccuracy in the shape estimation. Furthermore, the complex-
value-based DAS method requires dense sampling intervals

(within half the wavelength of the dielectric medium) between
the observation points in order to avoid the grating lobe effect.

B. RPM-Based Method

The RPM method has been demonstrated to address the
aforementioned issue when introducing an RP conversion
algorithm with a Gaussian kernel estimator is introduced.
According to the geometric optics approximation, one scat-
tering center point on the target boundary that corresponds
to one RP q should exist on a spheroid with focal points
LT and LR and major radius R. In order to extract the
scattering center point, this method is used to calculate all the
possible intersection points determined by other RPs (called
SubRPs). Then, the RP determines the scattering center p̂(q i )
that corresponds to the RP (called MainRP) qi , such that

p̂(qi ) = arg max
pint(q i ;ql ,qm)∈Pi

∑
(q j ,qk)∈Qall

g(qi ; q j , qk)

× exp

{
−� pint(q i ; q j , qk)− pint(q i ; ql , qm)�

2σ 2
r

}
.

(1)

Here, pint(q i ; q j , qk) denotes the intersection points between
the three spheroids that are determined by the RPs q i , q j , and
qk , respectively. Pi denotes a set of these intersection points,
and σr is determined by considering the spatial density of the
accumulated intersection points. Qall denotes the set of all
RPs. The weighting function g(qi ; q j , qk) is defined as

g(qi ; q j , qk) = s(q j )exp

{
− D

(
q i , q j

)
2σ 2

D

}

+ s
(
qk

)
exp

{
− D

(
qi , qk

)
2σ 2

D

}
(2)

where σD is empirically determined. D(q i , q j ) denotes the
actual separation of the two sets of transmitting and receiving
antennas such that

D(q i , q j ) = min(�LT,i − LT, j�2 + �LR,i − LR, j�2

× �LT,i − LR, j �2 + �LR,i − LT, j�2). (3)

The terms exp(−�D(q i , q j )�2/2σ 2
D) and

exp(−�D(q i , qk)�2/2σ 2
D) in (2) denote the weight function,

based on the characteristic determined in which the
intersection point of pint(qi ; q j , qk) should converge to the
actual scattering center when LT, j , LT,k → LT,i (also in LR),
as detailed in [5]. Thus, σD should be determined to be
greater than the minimum array or scanning interval.

We note that, in (1), the optimal combination of ql and qm
is determined by a full search for all possible combinations.
A number of studies demonstrated that the RPM achieves
accurate and high-speed 3-D imaging even with an elaborate
target shape, which generates a richly interfered situation,
by avoiding the preconnection procedure of the RPs. However,
when dealing with an object with many scattering points,
such as a human body, the RPM suffers from an explosive
increase in the computational cost because of the large number
of intersection points in the three spheroids that must all be
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Fig. 2. Relationship between sample point as pg
k,i and intersection point.

numerically solved. In a quantitative manner, the computa-
tional complexity of the original RPM method is estimated to
be O(N5), where N denotes the number of available RPs.

IV. PROPOSED RPM ALGORITHM

In order to achieve a substantial reduction in the com-
putational complexity of the RPM method, in this letter,
we introduce a sample-point extraction-based algorithm to
avoid the calculation of the intersection point of the spheroids,
for which the basic idea was introduced in [8]. To obtain
further acceleration, in this letter, we modify the evaluation
function in (1), to make it suitable for the sampled-point
extraction scheme. The proposed idea focuses on the fact
that the interval of the azimuth angle from the intersection
points to the sample point on the assumed spheroid is almost
proportional to the distance defined as

L(pg
i,k , q j ) ≡ ∣

∣
∥
∥LT, j − pg

i,k

∥
∥ + ∥

∥LR, j − pg
i,k

∥
∥ − 2R j

∣
∣/2.

(4)

Here, in the 3-D model, pg
i,k denotes the kth sampled point

on the spheroid obtained from qi , for which the focal points
are (LT,i , LR,i ) and the major radius is Ri . By exploiting (4),
this algorithm determines the scattering center p(qi) as

p̂(qi ) = arg max
pg

i,k

∑
q j ∈Qi

s(q j ) exp

{
− D(q i , q j )

2

2σ 2
D

}

× exp

{
− L

(
pg

i,k , q j

)2

2σ 2
L

}
(5)

where D(q i , q j ) is defined in (3), and σD and σL are the
constant parameters. Since σL expresses the spatial variations
of the intersection points, it is usually set to a sufficiently
smaller value than the array interval. Fig. 2 shows the rela-
tionship between the sample point and the intersection points.
Compared with (1) in the original RPM, (5) offers a univariate
optimization problem and does not require the combined
summation in calculating the evaluation function, which con-
siderably reduces the computational complexity. In addition,
the computational cost of this method does not significantly
depend on the number of processed RPs (i.e., N), which is
proportional to the number of objects. Here, we note that the
computational complexity of this method is estimated to be
O(M N2), where M denotes the total number of sample points.

Fig. 3. Relationship between sampling point and transmitting and receiving
antennas.

However, the accuracy of the proposed method naturally
depends on the spatial interval or the pattern of the sample
points, which should be preliminarily given. In this letter,
we introduce a golden ratio-based pattern, which occurs in
some patterns in nature, such as the spinal arrangement of
leaves, as the most efficient pattern for these sample points
without gaps. Here, we introduce the parameters θ and ψ as
the azimuth and elevation angles of the spheroid, respectively,
as shown in Fig. 3. Each sample point on the golden ratio
pattern of qi is expressed as follows:

pg
i,k =(LT, j +LR, j )/2+ Ri (sin θk cosψk, cos θk, sin θk sinψk)

(6)

where the following relationship holds:

θk = (k − 1)π/2M (7)

ψk = 4(k − 1)π/M(1 + √
5). (8)

The actual procedure of the proposed method is described
as follows:

Step 1: Signals are recorded at each combination of trans-
mitting and receiving antennas as s(LT, LR, t), and
are processed by the range extraction filter, whose
output is denoted as s(LT, LR, R�).

Step 2: RPs are extracted as q i from the local maxima of
s(LT, LR, R�) with respect to R�.

Step 3: For each RP qi , the sampling points on the spheroid
are created using (6) as pg

i,k .
Step 4: p̂(qi ) is determined by (6).
Step 5: Steps 3) and 4) are processed for all RPs, and

the target boundary points are expressed as an
aggregation of scattering center points p̂(qi ).

V. EVALUATION IN NUMERICAL SIMULATION

In this section, we describe the performance evaluation
of each method on a realistic human body phantom using
the 3-D FDTD-based numerical simulations. Here, the trans-
mitted signal forms a pulse-modulated signal, with a center
frequency of 5.0 GHz and a bandwidth of 2.0 GHz. An
elaborate human model is investigated as an object as shown
in Fig. 1, which is implemented in the commercial software
XFdtd Bio-Pro, where each tissue has a realistic dielectric
property [9]. Here, in order to obtain a higher range resolution
using the RPs extraction scheme, the Capon filter is adopted,
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Fig. 4. 3-D reconstruction results. Color: reconstruction error e. (a) Original
RPM. (b) Proposed method.

Fig. 5. Sectional view of reconstruction results obtained by the DAS method.
(a) x = 0 mm. (b) z = 1300 mm. White dots: actual human body shape.

TABLE I

COMPARISON FOR COMPUTATIONAL COMPLEXITY
AND ACTUAL PROCESSING TIMES

whose effectiveness been well demonstrated in [10]. The
1-D linear array antennas are composed of 3 transmitting
antennas and 21 receiving antennas, where the separation of
the transmitting and receiving antennas is 1000 and 100 mm,
respectively. This array antenna is scanned along the x-axis
for −1600 mm ≤ x ≤ 1600 mm with a 200-mm sampling
interval. Fig. 4 shows the reconstruction results obtained by the
original RPM (intersection point based) and the proposed RPM
methods. Here, the numbers of processed RPs and sampling
points in the proposed method are N = 3053 and M = 5000,
respectively. These figures show that both the original and
the proposed RPM methods accurately reconstruct each part
of the human body. In order to quantitatively analyze the
reconstruction image, the reconstruction error, denoted as e is
introduced as the minimum distance between the actual target
boundary and each reconstructed point. The accumulation
proportions that satisfy e ≤ 10 cm are 100% (2105/2105)
for the original RPM method and 98.1% (2705/2804) for the
proposed method, respectively. Table I lists the comparison of
the computational complexity and the actual processing times
of each method. We note that the calculation time is more
than 6 × 105 s (approximately 165 h) for the original RPM
method and 410 s for the proposed method using an Intel(R)
Xeon(R) CPU E5-2680 v4 at 2.40 GHz and 128-GB RAM.

Fig. 6. Sliced view of reconstruction results obtained by the proposed
method. Black dots: actual human body shape. (a) 1250 mm ≤ z ≤ 1350 mm.
(b) −50 mm ≤ x ≤ 50 mm.

Fig. 7. (a) Box-plot diagram for reconstruction error e versus the number
of sample points (M). (b) Processing time versus the number of sample
points (M).

In other words, approximately 1400-fold times acceleration
can be achieved with the proposed method, without sacrificing
the reconstruction accuracy. For reference, Fig. 5 shows the
image obtained by the DAS algorithm, whereas Fig. 6 shows
a sliced view of the reconstruction results by the proposed
method, for comparison. Fig. 5 shows that the DAS image
does not present a significant boundary shape of the human
body, compared with that obtained by the proposed method as
shown in Fig. 6.

Note that the accuracy of the proposed method naturally
depends on the number of sampling points (i.e., the density
of the sampling pattern). Hence, we predict that the increase
in the sampling points incurs a high computational cost.
Here, in order to quantitatively assess the aforementioned
characteristic, we investigated the reconstruction performance
under different numbers of sampling points. Fig. 7 shows
the box-plot diagram of error e assuming the same model
as that shown in Fig. 1 and the required computational time
for each number of sampling points. These figures show that
lower limits exist for reconstruction accuracy e, as shown
in Fig. 7(a), and the computational costs are approximately
linear with the number of sampling points, which is also
another advantage of the proposed algorithm.

Next, the robustness of the proposed method to additive
noise is investigated, where a white Gaussian noise is added
to each recorded electric field. Fig. 8 shows the reconstruction
results by the proposed method, where the average signal-
to-noise ratio (SNR) is 20 dB, assuming the same model
shown in Fig. 1. Fig. 8 shows that the proposed method
has a significant robustness to additive noise, even with the
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Fig. 8. 3-D reconstruction results obtained by the proposed method at 20-dB
SNR.

TABLE II

QUANTITATIVE COMPARISON FOR EACH SNR LEVEL

IN THE PROPOSED METHOD

TABLE III

QUANTITATIVE COMPARISON FOR EACH SNR LEVEL

IN THE PROPOSED METHOD

use of the Capon filter. Table II summarizes the results for
different SNR levels. The proposed method maintains noise
robustness similar to that of the original RPM method, in
which both the original and the proposed methods apply false-
image reduction by considering the quantity of the evaluation
function in (5) at the postprocessing.

Finally, the sensitivity study of the parameters used in
the proposed method, namely, σD and σL , assuming the
same model shown in Fig. 1 is investigated next. Table III
summarizes the quantitative analysis under each parameter
variation and shows that no severe sensitivity to the selected
parameters exists, especially for σL . In contrast, we confirmed
that when σD becomes smaller, the error becomes relatively
larger, especially along the z axis, because the minimum
separation of the transmitting antennas along the z-axis is
1000 mm. Thus, we recommend that σD should be larger
than the minimum separation for both the transmitting and
receiving antennas.

VI. CONCLUSION

In this letter, we proposed a considerably lower complex-
ity algorithm for 3-D image reconstruction with the RPM
method using a sample-point-based scattering center extrac-
tion, in which a golden ratio sampling pattern and a simplified
evaluation function are introduced to upgrade the computa-
tional efficacy. The results from the FDTD-based numerical
simulations, using a realistic human body model, demonstrate
that our proposed RPM method significantly accelerates the
computational speed without sacrificing the reconstruction
accuracy, compared with the original RPM method. We note
that one of the advantages of the UWB radar is its applica-
bility to through-the-wall imaging (TWI) scenario, and this
algorithm can be extended to a TWI model using the suitable
modifications by considering the distorted propagation model
similar to that in [11].
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