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Abstract— Microwave mammography is one of the most
promising alternatives to X-ray-based breast cancer detection
techniques, where a malignant tumor has a certain level of
dielectric property contrast compared with those in normal
tissues. However, the inverse problem of reconstructing complex
permittivity is a non-linear and ill-posed problem, and the
appropriate selection of such algorithms is the key to the
success of microwave mammography. The contrast source
inversion (CSI) method is the most promising solution to
the above problem, where the iterative procedure does not
require a computationally expensive forward solver, like the
finite difference time domain (FDTD) method. However, the
conventional CSI method assumes a non-dispersive dielectric
model, while breast or other human tissues have a non-
negligible dispersive property. To address this problem, this
paper introduces an extended CSI method, which is suitable for
dispersive medium and in which multi-frequency integration
is introduced to enhance the reconstruction accuracy. The
FDTD numerical test, which uses a realistic breast phantom
via magnetic resonance imaging (MRI), demonstrates that
our proposed method efficiently enhances the reconstruction
accuracy even in dispersive medium.

I. INTRODUCTION

Recent reports from the World Cancer Research Fund have
revealed that breast cancer has become one of the most
widely diagnosed cancers in women [1]. Microwave-based
breast cancer detection, known as microwave mammography,
is one of the promising options for frequent screening
for cancer, which may be used as an alternative to the
traditional X-ray mammography, ultrasound, and magnetic
resonance imaging (MRI) in terms of cost, compactness, and
safety. While X-ray mammography is the most commonly
used imaging modality, it has a serious risk because of X-
ray exposure to normal cells [2]. Ultrasound imaging has
some advantages in terms of cost, portability, and suitability,
especially for women with dense breasts [3]. The MRI-based
modality has disadvantages in terms of its high cost and the
large equipment required [4].

Microwave mammography is based on the clinical fact that
there is a significant dielectric property contrast between nor-
mal and malignant tissue in breasts at microwave frequencies.
M. Lazebnik et al. demonstrated that there is a significant
dielectric property contrast between normal and malignant
tissue when measuring excised breast tissue specimens [5].
J. D. Shea et al. also revealed that the dispersion property
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and fitting parameters using the single-pole Debye model
[4] for the complex permittivity of breast tissue are from
0.5 to 3.5 GHz [6]. Microwave imaging algorithms are
mainly divided into two categories: the radar-based approach
and the tomographic approach. Studies have shown that
[7] the space-time beamforming-based radar approach has
successfully demonstrated its effectiveness by processing a
number of tumor reflections. However, this method suffers
from a lower contrast image when the malignant tumor is
buried in the fibroglandular tissue, which has the same level
of dielectric property as cancer.

In contrast, the tomographic approach is considered more
promising because a complex dielectric map can be recon-
structed by solving the domain integral equation. However,
the above integral equation cannot be solved easily because
it is non-linear and an ill-posed problem. In particular,
conventional Born approximation-based methods, such as
diffraction tomography [8], suffer from inaccuracy in dealing
with the dielectric property map that has a much higher
contrast than the background medium. Among the numerous
inverse scattering algorithms, the distorted Born iterative
method (DBIM) is one of the most promising algorithms
because it updates the background profile to maintain the
linearity of the problem. Some literature has shown that
the DBIM offers accurate results even for dispersive breast
medium, including cancer [9], [10], [11]. However, the
DBIM basically requires a forward solver in each iterative
step, and it would take an enormous amount of computation,
especially for dealing with a three-dimensional problem.

Considering this background, we focused on the contrast
source inversion (CSI) method [12], which also solves the
non-linear integral equation by iteration steps. However, the
CSI does not require a computationally expensive forward
solver, such as FDTD; instead, it simultaneously solves the
state and data equation. In addition, a multiple frequency
strategy for the CSI method, such as frequency hopping,
was developed for accuracy enhancement in refs. [13], [14].
However, there are very few studies that have focused on
the CSI method and that dealt with a frequency-dependent
dielectric object, such as breasts or other human tissues.

To address this problem, this paper introduces a multi-
frequency integration scheme for the CSI method for dis-
persive breast medium [13]. This method first reconstructs
the complex permittivity map for each frequency using
the traditional CSI method, and the frequency-dependent
characteristic is sequentially determined by the single-pole
Debye model. In addition, this method integrates the multi-
frequency CSI outputs by considering the Debye curve using
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the differentiation of the Debye formula. Two-dimensional
(2-D) FDTD numerical tests that use the MRI-derived real-
istic breast phantom demonstrated that our proposed method
efficiently enhances the reconstruction accuracy even for a
dispersive model.

II. OBSERVARTION MODEL
Figure 1 shows the observation model for breast cancer

detection using microwaves. The breast medium is comprised
of skin, adipose, fibro-glandular, and tumor tissues, each
of which has a lossy, dispersive, and isotropic dielectric
property. A number of arrays of transmitting and receiving
antennas form the cylindrical array surrounding the breast,
the region of which denotes S. Microwave signals are sequen-
tially sent from each transmitting antenna and then recorded
at all receiving antennas. The locations of the transmitting
and receiving antennas are denoted as rt and rr, respectively.
E total(rt ,rr; t) denotes the total electric field for each antenna
combination.

III. CSI METHOD
A. Forward Problem Formulation

In assuming the scatter in the domain r ∈ D, the electric
scattered field is expressed using the Helmholtz type domain
integral equation as

Escat(rt ,rr,ω)≡ E total(rt ,rr,ω)−E in(rt ,rr,ω)

= k2
b

∫
D

Gb(rr,r,ω)χ(r,ω)E total(rt ,r,ω)dr,r ∈ D, (1)

where E total(rt ,rr,ω) is the total field, E in(rt ,rr,ω) is the
incident field, kb is the wavenumber for the background,
µ is the permeability, Gb(rr,r,ω) is Green’s function of
the background, and χ(r,ω) ≡ ε(r,ω)/εb(r,ω)− 1. The
Green’s function is calculated as

Gb(rr,r,ω) =−( j/4)H(2)
0 (kb|rr−r|), (2)

where H(2)
0 is the zero-order Hankel function of the second

kind. Here the CSI algorithm introduces a dummy variable,
the so-called contrast source as

w(r,ω)≡ E total(rt ,r,ω)χ(r,ω). (3)

Then, Eq. (1) is reformed as

Escat(rt ,rr,ω) = k2
b

∫
D

Gb(rr,r,ω)w(r,ω)dr,(r ∈ D). (4)

Here, the contrast source is

w(r,ω) = χ(r,ω)E in(rt ,r
′,ω)

+χ(r,ω)k2
b

∫
D

Gb(r
′,r,ω)w(r,ω)dr,r,(r ∈ D), (5)

where subscripts S and D indicate the domain of the array
and scatterer, respectively, as shown in Fig. 1. Here, we
introduce the notations for the integrals in Eqs. (4) and (5)
as

GSw(r,ω) = k2
b

∫
D

Gb(rr,r,ω)w(r,ω)dr,(r ∈ D), (6)

GDw(r,ω) = k2
b

∫
D

Gb(r
′,r,ω)w(r,ω)dr,(r′ ∈ D). (7)

Fig. 1: Observation model.

Here, Eq. (6) is named the data equation, and Eq. (7) is
called the state (or object) equation.

B. Inversion Algorithm

To extract the contrast function χ(r,ω), the CSI defines
the following cost function:

F(χ,w)≡
∑rr∈S ‖Escat(rt ,rr,ω)−GS

j w(r,ω)‖2
S

∑rr∈S ‖Escat(rt ,rr,ω)‖2
S

+
∑r′∈D ‖χ(r,ω)E in(rt ,r

′,ω)−w(r,ω)+χ(r,ω)GD
j w(r,ω)‖2

D

∑r′∈D ‖χ(r,ω)E in(rt ,r′,ω)‖2
D

, (8)

where ‖ ·‖2
S and ‖ ·‖2

D are the l2 norms defined as the S and
D domains, respectively. Of note, the first and second terms
are the errors from data equation (4) and state equation (5),
respectively. The cost function F(χ,w) is minimized by se-
quentially updating the valuables as w(r,ω), E total(rt ,r,ω),
and χ(r,ω).

IV. MULTI-FREQUENCY INTEGRATED CSI

Some studies have revealed that the multiple frequency
strategy for the CSI method may enhance the reconstruction
accuracy, such as a frequency hopping scheme [13], [14].
However, the traditional multi-frequency CSI does not deal
with dispersive media or objects, and there have been quite a
few reports that have applied such methods to the dispersive
breast tumor detection scenario. In those traditional methods,
they considered the frequency dependency for only the
imaginary part of the relative complex permittivity, which
is formulated as follows,

εr(ω;ε∞,σs) = ε∞ +
σs

jωε0
, (9)

where ε∞ denotes the relative permittivity at the infinite
frequency, and σs denotes the conductivity. However, many
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studies have demonstrated that all tissues in the breast can
be well modeled by the single-pole Debye model as, [4]

εDebye(ω;ε∞,∆ε,σs) = ε∞ +
∆ε

1+ jωτ
+

σs

jωε0
, (10)

where ∆ε is the difference between ε∞ and the relative
permittivity at zero frequency, and τ denotes the relaxation
time. To achieve an appropriate integration for the multi-
frequency CSI results, the above frequency dependency
should be considered in our proposed method.

To implement the above algorithm, the proposed method
initially estimates the Debye parameters from the multiple
CSI results in each frequency. Then, the least square mini-
mization is introduced to estimate the Debye parameters as,

(ε̂∞,∆ε̂, σ̂s) = arg min
(ε∞,∆ε,σs)

N f

∑
i=1
|εDebye( fi;ε∞,∆ε,σs)− ε̃

init( fi)|2,

(11)

where ε̃ init( fi) denotes the initial estimate of the CSI for each
frequency fi, and N f denotes the total number of multiple
frequencies in the integration. We focus on the CSI result
at a specific frequency fi, and this result is compensated by
using other all frequencies as follows:

ε̂( fi) =

∑
N f
j=1 exp

(
−( fi− f j)

2

2σ2
f

)
ε̃( fi; f j)

∑
N f
j=1 exp

(
−( fi− f j)2

2σ2
f

) , (12)

where ε̃( fi; f j) is modeled as the first order approximation;

ε̃( fi; f j)≡ ε̂( f j)+
dεr

d f

∣∣∣∣
f= f j

( fi− f j), (13)

where dεr
d f is defined as the differentiation of the right term

in Eq. (10) with respect to f as,

dεr

d f
≡− j2πτ∆ε̂

(1+ j2π f τ)2 −
σ̂s

j2π f 2ε0
. (14)

This method can appropriately integrate the multi-frequency
CSI results for the specific frequency, and may enhance the
reconstruction accuracy compared with that obtained by the
single frequency CSI result.

V. NUMERICAL SIMULATION

This section describes the 2-D FDTD-based numerical
tests using a realistic numerical breast phantom of healthy
women [15]: a data set of the Class 3 (heterogeneously
dense) phantom is assumed, where a z = 16 mm slice is
investigated. Here, Fig. 2 shows the original relative complex
permittivity of the breast phantom at the center frequency,
including the cancer cells with a 6-mm size and the Debye
parameter as (ε∞, ∆ε , σs) = (18.0, 31.0, and 0.75 S/m)
[10]. The source current forms a raised-cosine pulse with
a 2.0-GHz center frequency and a 2.1-GHz bandwidth. The
array with 30 antennas is arranged as the area surrounding
the breast, where each antenna sequentially transmits and
receives signals; specifically, the data for all combinations

(a) (b)

Fig. 2: 2-D numerical breast phantom (Class 3) and configuration.
The hollow circle denotes the location of the transmitting and
receiving antenna. The colorbar displays (a): the real and (b): the
imaginary parts of complex permittivity.

(a) f =1.44 GHz (b) f =1.55 GHz (c) f =1.67 GHz

(d) f =1.78 GHz (e) f =1.90 GHz (f) f =2.01 GHz

(g) f =2.13 GHz (h) f =2.24 GHz (i) f =2.36 GHz

Fig. 3: Reconstruction results of the CSI for each frequency for
real part of complex permittivity.

of transmitting and receiving antennas are processed in the
CSI. The scattered electric field is calculated by the FDTD
method, assuming the single-pole Debye model. Both the
size of the FDTD and the unknown pixel are 2 mm. The
noiseless case is assumed. We investigated multiple frequen-
cies from 1.44 GHz to 2.53 GHz with a 0.0575-GHz sample,
which is defined as ∆ f , resulting in 20 frequency samples.
The CSI calculation was performed at each frequency, and
the number of iterations for the CSI was 30000. Figures 3
and 4 show the initial estimates using the CSI method for
each frequency. The average computational time for each
frequency CSI was approximately 1200 s using an Intel(R)
Xeon(R) CPU E5-2620 with 2.4 GHz and 128 GB RAM.
As shown in these figures, there are differences among the
results obtained at multiple frequencies, and we need to
consider the appropriate integration scheme for these results
while also considering the frequency dependency. Figure 5
also shows the results of the single-pole Debye fitting using
the multiple frequency CSI results, at specific pixels. Figure
6 compares the results for the single frequency CSI and the
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(a) f =1.44 GHz (b) f =1.55 GHz (c) f =1.67 GHz

(d) f =1.78 GHz (e) f =1.90 GHz (f) f =2.01 GHz

(g) f =2.13 GHz (h) f =2.24 GHz (i) f =2.36 GHz

Fig. 4: Reconstruction results of the CSI for each frequency for
imaginary part of complex permittivity.

(a) (b)

Fig. 5: Estimations of complex permittivity ((a): real and (b):
imaginary parts) and fitting curve based on the single pole Debye
model.

proposed multi-frequency integrated CSI at the frequency of
2.01 GHz, where the two parameters σ f in the proposed
method were investigated. Here, the normalized root mean
square error (NRMSE) for the real and imaginary complex
permittivity is introduced for the quantitative error analysis
as,

NRMSEε ′r =

√√√√ 1
K

K

∑
k=1

∣∣∣∣ε ′r(rk)− ε ′r,true(rk)

ε̄ ′r,max

∣∣∣∣2, (15)

NRMSEε ′′r =

√√√√ 1
K

K

∑
k=1

∣∣∣∣ε ′′r (rk)− ε ′′r,true(rk)

ε̄ ′′r,max

∣∣∣∣2, (16)

where ε ′r and ε ′′r are the real and imaginary parts of the
complex permittivity, respectively; the subscript “true” de-
notes the original value, the subscript “max” denotes the max
value, and K denotes the number of cells in the ROI. Table
1 shows the NRMSE for each results. Figure 7 compares the
histogram of errors for both the real and imaginary parts of
the complex permittivity for all pixels of the ROI area for
the single frequency CSI and for the proposed method. Table
2 shows the cumulative probabilities of the reconstruction

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Results of complex permittivity reconstruction: (a) and (b):
using the single frequency CSI. (c) and (d): using the proposed
method with σ f = 5∆ f . (e) and (f): using the proposed method
with σ f = 10∆ f .

TABLE I: Results of NRMSE at the frequency 2.01 GHz.

Re[εr] Im[εr]
Single frequency

(Namely, σ f = 0 ) 0.1688 0.2497

σ f = 5∆ f 0.1662 0.2348
σ f = 10∆ f 0.1663 0.2336

errors for each method. As shown in this table, the proposed
method significantly increased the number of pixels with a
high accuracy.

VI. CONCLUSIONS

We presented a multi-frequency integration-based CSI
method for dispersive breast medium that combines multi-
ple frequency results using the Debye formula. Numerical
simulation combined with realistic breast phantoms offers a
subtle enhancement in the NRMSE compared with single
frequency results. Additionally, the histogram of errors for
both the real and imaginary parts of the complex permittivity
indicates an improvement in the reconstruction accuracy of
the complex permittivity by integrating the multi-frequency
data.
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(a) σ f = 5∆ f (b) σ f = 5∆ f

(c) σ f = 10∆ f (d) σ f = 10∆ f

Fig. 7: Error distribution. (a) and (b): Case of σ f = 5∆ f . (c) and
(d): Case of σ f = 10∆ f .

TABLE II: Cumulative probabilities for each method.

Error of Re[εr]
≤ 5

Error of Im[εr]
≤ 2

Single frequency
(σ f = 0 ) 52.8% 49.7%

Proposed (σ f = 5∆ f ) 55.4% 52.6%
Proposed (σ f = 10∆ f ) 55.9% 53.6%
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