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A Radar-Tomographic Bidirectional Method for
Quantitative Microwave Breast Imaging
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Abstract— A bidirectional processing method using radar and
tomography approaches is proposed to achieve an accurate dielec-
tric profile reconstruction for breast cancer microwave imaging.
We introduce a tomography-enhanced radar approach to obtain
accurate radar profiles for highly heterogeneous media, where
Green’s function and clutter components, such as skin reflection,
are effectively reconstructed using a contrast source inversion
(CSD)-based tomography scheme, that is, “tomography — radar”
process. Furthermore, this method introduces a radar-enhanced
CSI approach to provide accurate dielectric profiles using an
appropriate initial estimate through an accuracy-enhanced radar
image. The aforementioned bidirectional processing between
radar and tomography consequentially upgrades the recon-
struction performance of quantitative imaging (i.e., complex
permittivity profile reconstruction) for breast media (radar —
tomography process), which would improve the recognition
rate for cancerous tissues. The finite-difference time-domain
(FDTD)-based numerical test, using realistic breast phantoms,
demonstrated that the proposed approach considerably enhances
the reconstruction accuracy in permittivity and conductivity.

Index Terms— Complex permittivity reconstruction, contrast
source inversion (CSI), inverse scattering (IS) analysis, microwave
ultrawide-band (UWB) breast cancer detection, radar imaging.

I. INTRODUCTION

ICROWAVE breast cancer imaging achieves safe, low-

cost, compact, pain-free, and frequent (once every few
months) monitoring modality, which is hardly accomplished
by the existing X-ray mammography technologies. Thus,
microwave-based diagnoses strongly help to increase the cur-
rently low cancer examination rate (44% in Japan [1]) or
increase the recognition rate for early-stage cancer at a size
of 10 mm [2], [3], which enhances the survival rate through
early treatment. Several studies have reported that a distinct
dielectric contrast exists between adipose and malignant tumor
tissues [4], [5], [6], [7], which contributes to a strong backscat-
tering and leads to high-contrast images using a focusing
algorithm, namely, the radar approach. The radar approach
is often called confocal imaging (CI) or beamformer, which
coherently synthesizes backscattering signals to enhance spa-
tial resolution [8], [9], [10], [11]. Although the radar approach
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has advantages such as low complexity, it cannot retrieve
the dielectric property of each tissue. In addition, most radar
approaches assume homogeneity for breast media. Thus, they
considerably suffer from inaccuracy in the case of highly
heterogeneous media, namely dense breasts, because densely
distributed glandular tissue generates significant reflection,
which elicits a strong response in radar images and false-
positive diagnoses. A few studies have attempted to modify
the propagation model to suit heterogeneous media [12],
[13]. Our previous study [13] accurately generated a Green’s
function for heterogeneous media using the optimizing output
obtained by the contrast source inversion (CSI) [14]. This
approach also generates a clutter signal using the CSI outputs
and can remarkably enhance the signal-to-clutter ratio (SCR).
However, certain challenges must be resolved, such as incom-
plete prior knowledge of dielectric profiles for background
media.

Regarding dielectric profile reconstruction, namely quan-
titative imaging for complex permittivity, there are many
studies on inverse scattering (IS) analyses [15], [16], [17],
[18], particularly the so-called tomography approach, which
directly optimizes the spatial profile of complex permittivity
by solving the domain integral equation (DIE). However,
the aforementioned inverse problem is usually an ill-posed
condition and nonlinear problem, which hinges on an accurate
reconstruction with a low-complexity algorithm. To alleviate
these IS difficulties, many algorithms can be used, such as
linear or nonlinear optimizers [17], [18], [19], [20], [21].
This study focused on the effective IS approach as CSI,
which offers a distinct advantage in that it does not require
an iterative calculation of the forward solver, such as finite-
difference time-domain (FDTD). Notably, CSI does not only
optimize an object function (dielectric profile), but also total
electric fields within the entire area of the region of inter-
est (ROI), by minimizing the cost functions defined by the
state and data equations. Additionally, this approach has
been massively introduced in biomedical applications, such
as breast cancer detection [22], [23], [24], [25] or brain
cerebral hemorrhage [26], [27]. However, CSI still suffers from
inaccuracy in the reconstruction of highly heterogeneous (high
contrast) media owing to strong nonlinearity or local optimiza-
tion issues. To address the above difficulty, certain studies
integrating the radar approach have been developed [28],
[29], [30], by narrowing the ROI corresponding to the high-
contrast area, for example, fibroglandular or tumor tissues.
Nonetheless, its reconstruction accuracy naturally depends
on that of a radar image, which almost always assumes a
homogeneous background media. Kurrant and Fear [31] also
introduced the time-of-arrival (TOA)-based ROI estimates with
average dielectric properties. However, they presume several
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unpractical assumptions, including one where the TOA values
from skin, adipose, or glandular areas are completely separated
and that these TOAs are converted to the dielectric constant
for each area, using geometrical optics approximation. Note
that the study in [32] used prior ultrasound images. However,
it required an accurate registration procedure between tomog-
raphy and ultrasound images.

This article introduces a bidirectional processing algorithm
between the radar and tomography methods. The first pro-
cessing is “tomography — radar,” that is, the CSI-based
tomography generates an accurate Green’s function with a
breast model constituting only skin and adipose tissues, which
enhances the reconstruction accuracy of the radar image,
provided that it only focuses on a high-contrast area, such
as fibroglandular or cancerous tissues. This has been partially
investigated previously [13]. In the second process, that is,
“radar — tomography,” the obtained radar image provides
an appropriate initial estimate of the CSI reconstruction by
converting the strength of the radar image to the complex
permittivity. There are some investigations of dependency of
initial guess of the IS analysis [18]. Several approaches based
on the level set algorithm, which defines the boundary of the
low and high contrast area to reduce the number of unknowns,
have been also developed [33], [34], [35], using a prior
knowledge of dielectric parameter of each tissue. However,
there are few studies to provide a radar image-based initial
guess for the post-IS approach. Thus, the main contributions
of this study are as follows.

1) The CSI-based tomography provides an accurate estima-
tion of Green’s function in heterogeneous media and the
clutter signal, such as skin surface reflection (“tomogra-
phy — radar” processing).

2) The radar image offers a promising initial estimate for
post-CSI quantitative reconstruction (‘“radar — tomog-
raphy”), and the reconstruction accuracy including the
high-contrast area (fibroglandular or tumor tissues) is
significantly improved.

The FDTD numerical analysis, using a magnetic resonance
imaging (MRI)-derived realistic phantom, showed that the
proposed scheme could achieve an accurate dielectric profile
reconstruction, thereby increasing the cancer recognition rate.

II. METHOD
A. Observation Model

Fig. 1 shows the 2-D configuration of the observation
and target models. The array with numerous transmitters and
receivers was located within the breast surrounding area,
denoted by 2g. The inner area of the breast was defined as the
ROI, denoted by Qp, and the breast comprised skin, adipose,
fibroglandular, and tumor tissues, each of which exhibited
dispersive and isotropic dielectric properties. ET(w; rr, rg)
and EYw; rr, rr) represent the observed total electric fields
with and without the breast media, respectively, which are
illuminated by the point-source transmitter located at rt and
received at rg. ES(w; rr, rr) = EV(w; r1, rr)— EXw; r1, FR)
is also defined as a scattering electric field.

B. Contrast Source Inversion

To accomplish an accurate quantitative reconstruction of
the complex permittivity of the breast, the CSI method is
introduced as a promising IS approach. Derived from the
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Fig. 1. Observation model. Observation and object areas are defined as Qg
and Qp, respectively.

Helmholtz equations, the scattered electric field ES(w; r1, rg)
is expressed as

(1)

ES(w; rr, TR) =k§g/ G (w; r, rR)w(w; rr, r)dr

Qp

where kp, and G (w; r, rg) are the wavenumber and Green’s
function of the background media, respectively. w(w; rr,r) =
X (w; P)E"(w; rr, r) is the contrast source, where x(w; r) =
(e(r) — epg(r))/evg(r) is the contrast function, and €(r) and
€pg(r) denote the complex permittivities at position r with
and without the target, respectively. As a physical constraint,
the DIE in (1) must be satisfied in Qg and Qp. Thus, the
CSI introduces the following cost function to reconstruct the
contrast function x (w; r):

Fx, w)
ZFT ||ES(0)7 rT’ rR) - gs[w]”?ls

ST
2l x @ E (@ rr, 1) —w(w; rr, r)+X(r)QD[w]||§zD
> x @ nEw; e |G, '

2

Here, GS and GP are defined as

Gilw] = kﬁg/ G (w; rr, r)w(w; rr, r)dr, (rg € Qs)
Qp

3)

GPlw] = kgg/Q Gbg(a); r’,r)w(a); rr, r)dr, (r’ e QD).
) “)

||-||&2-ZS and ||~||§ZD express the [, norms calculated in g

and Qp, respectively. By sequentially updating w(w; rr, r),
ET(w; rr, rr), and x(w; r) (primary unknowns), F(x, w) is
minimized, and the variable for the total fields in the ROI,
ET(w; rr, rr) (secondary unknowns), is also optimized during
the CSI processing, which is distinctly characteristic of the CSI
scheme.

III. PROPOSED METHOD

A. CSI Enhanced Confocal Imaging (Tomography — Radar)

The most used radar imaging approach is based on the
CI scheme, which has been widely employed in microwave
breast imaging [8], [9]. Although the CI could reconstruct the
reflection coefficient profile with considerably less complexity,

Authorized licensed use limited to: UNIVERSITY OF ELECTRO COMMUNICATIONS. Downloaded on May 23,2025 at 13:18:31 UTC from IEEE Xplore. Restrictions apply.



9816

compared with the IS approach, its reconstruction accuracy
highly depends on the assumed propagation model, which
is mostly set as homogeneous media with average dielectric
breast profiles. However, in dealing with highly heteroge-
neous breast media, the aforementioned presumption generates
a nonnegligible erroneous response because of a mismatch
between real and assumed dielectric properties. Most studies
assume that a clutter response such as skin reflection or
heterogeneity-caused scattering is perfectly eliminated during
the CI preprocessing, which is hardly possible realistically.
This is because a skin reflection waveform generally depends
on the breast shape (e.g., the curvature of the surface) or the
distance between the element and the skin surface (dielectric
coupling effect), which has been demonstrated in some works
in [36], [37], and [38].

To address this, our previous study [13] developed a
CSI-based CI scheme, which provides a good estimate of
Green’s function in an arbitrary heterogeneous model and
generates an accurate clutter signal by exploiting the optimized
total fields by the CSI. The methodology is as follows.
First, we applied the CSI optimization scheme assuming the
background media, such as skin, and adipose-dominant media,
that is, only the total field, EY(w; rr,r) is updated using
X (w; r), which is determined by the assumed background
media. Thereafter, by exploiting the aforementioned optimized
total field, the Green’s function was determined as

FT(,.
G (@i rr.r) = M 5)
Ep,(w; rr, rr)
ET( .
ébRg(a); rp, 1) = M (6)
Epy(@; rr, rr)
where Egg(a); rr,rr) and Egg(a); rg,rr) express the total
fields measured at r from the source at rt and that measured
at rr from the source at rg, respectively. Also the division
operator in (5) and (6) denotes the element-wise division
operator along . The background media is assumed as a
vacuum. ET(w; rr, r) and ET(a) rg, r) are the optimized total
fields at r by the CSI with the fixed contrast function as
x(a) r). In addition, £T(w; rr,r) and ET(w; rg,r) can be
given by the reciprocity theorem since the transmitters and
receivers are convertible.

In addition, the proposed scheme focuses on the following
distinct advantages, in terms of clutter signal extraction and
suppression. The CSI can provide the total fields in the ROI,
which contributes to generating the total fields of the back-
ground media (skin and adipose dominant breast) excluding a
high contrast object, ETB (w; rr, rRr) as

E™(w; rr, rR)

= EYw; rr, 1rr)
+ k3 / GE*(w; r, rR)W(w; rr, r)dr, (rg € Q). (7)
Qp

Gﬁ* (w; rg, r) is Green’s function in assuming the background
media, given by (6). w(w; rr,r) expresses w(w; rr,r) =

2 (@, 1) ET(w; r1, 1), where % (o, r) is fixed. ET(w; rr, r) is
also provided by the optimization outputs, similar to (5) or
(6). Then, the CI image I(r) is defined as

> / ES(; 1, 1R)

(r7,rr)€Ls

I(r) =

X GbRg(w; Iy, r)f;l%g*(a); ro, r)do.  (8)
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Details of the aforementioned scheme have been previously
described [13]. If we provide a previous background model
constituting only skin and adipose tissue (low contrast), the
above CI provides the reconstruction image focusing only on
high-contrast tissues, such as fibroglandular or cancerous tis-
sues. However, since the CI provides only a qualitative image,
such as reflection strength, it is insufficient to discriminate
the difference between fibroglandular and tumor tissues. Thus,
the posttomography approach is essentially required for the
quantitative reconstruction of complex permittivity to provide
an accurate recognition rate between glandular and cancerous
tissues.

B. Initial Estimate With Enhanced Confocal Image
(Radar — Tomography)

To provide an appropriate initial estimation, this method
converts the CI image into the dielectric profile, using the
following deconvolution and optimization scheme. Fig. 2
illustrates the processing flow of the deconvolution scheme.
First, to enhance the spatial resolution of the CI image, the
following decomposition is introduced:

o= I

where H (ky, ky; o1; a) is defined as

kx» k) ’ le )el (kxx+k'vy)dkxdky (9)

(ke k)

— (1
G (ky, ky; o1) (10

H(kx, ky; ot a) = WROff(kX, ky; Ot)

where (ky, ky) denotes the 2-D Fourier transform of I (r) in
terms of x and y. G(ky, k,; o1) is defined as

00 2 2
+ ,
G(km ky; 01) = // exp|:—%}fj(kw%ﬂ)d?fdy
—00 I
(11)

where o7 denotes the standard deviation of the Gaussian point
spread function. In addition, WROff(kx,ky; «) is the roll-off
filter-based windowing function as follows (12), shown at

= Jk2+ k2 holds.

Parameters oy and « are determined by considering the point
spread function and sidelobe level of the output image / [P(r),
assuming a single-point object in the background media.

The initial estimate of the Debye parameter profiles is
determined as follows:

p(r; B) = pg(r) + BI(r) Pumor

where p . = (€2, Ae™™r, ™) denotes the representa-
tive Debye parameter vector of the tumor tissue. p ,..(r) =
(elumer, Agtmor g lumery s defined as

the bottom of the next page, where k,

13)

skm A Gskm skm)
9

oo 0 §

PB(r) = I ( ggl’ Aeadl,o'sadl),

Notably, since we assume that the background media are
composed of only skin and adipose tissue, the parameters for
fibroglandular or cancer tissues are not required here.

The parameter § is then optimized as

B = argﬁminF(x(p(r; B)), w).

(r € stin N QD)

(I’ [S ﬁskin N QD). (14)

15)
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Cl image
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Fig. 2. Deconvolution process using the 2-D Gaussian function and roll-off filtering in the proposed method.

G(ky, ky; op)

G(ky ky; op)

- . . -

9817

Tk ky) Roll-off fllter

WRoff(k k (l

Decovolutlon image
rm

H(’f key; Ul“) 2D IFFT

=)

Optimized Total fields
(Step 2)

-
Basis dielectric profile
(Step 1)

cslwith
fixed

-&

Tomography = Radar

~
Radar image Deconvoluted image)
(Step 3, 4, and 5) (Step 6)

- B -

Cl is converted to dielectric profile for initial estimate

Initial estimate
(Step 6)

\

Radar = Tomography

~

Final reconstruction
(Step 7)

Fig. 3.

Here, x(p(r; B)) denotes the contrast function, which is
defined by the given Debye profile p(r; B). Finally, the initial

estimate is determined as y (p(r; ﬁ)), and the CSI iteration
process is conducted with N iterations to provide a final
reconstruction profiles of the complex permittivity. Note that
this study does not focus on the resolution enhancement for
the CI images, but aims to provide an accurate initial estimate
using higher resolutions and more accurate CI profiles, for the
postquantitative imaging with CSI.

C. Procedure of Proposed Method
Fig. 3 shows the schematic of the proposed method, namely,
the bidirectional processing between radar and tomography.
The procedure of this method is as follows.
Step 1: The dielectric profile using only skin and adipose
media is defined in (14) as pg(r), and ¥ (w, r) is

Schematic of the proposed method. Bidirectional processing between radar and tomography.

also defined using this profile as pg(r), assuming
that the background media is a vacuum.

ET(w; rr, 1) is optlmlzed at each angular frequency
w, by minimizing the CSI cost function in (2),
where x'%(w, r) is fixed in the iteration process.
Green’s functions, GT(a) rr,r) and GR(a) rg,r),
are determined in (5) and (6), respectively, by the
updated total field as E (wj; rr, 7).

The clutter signal, E™ (w;; rr, rr), is generated by
((7)) and is eliminated from the scattered signal.
The scattered field is determined, assuming a mul-
tilayered background ES (w;; rr, rR).

The CSl-enhanced CI process is conducted using
(8) and generates the i image as I (r) .

Image deconvolution is applied in (9), and the
initial estimate for the Debye parameters are deter-
mined as x(p(r; B)) using (15).

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

WRM ey, ey ) =

09
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Step 7: Using the initial estimate, x(p(r; ,3)), CSI is
applied and affords the final reconstruction profile
of complex permittivity.

Notably, Step 3 generates the accurate propagation model for
heterogeneous media, and Step 4 introduces the suppression
process for the clutter from the skin surface.

IV. NUMERICAL TEST
A. Numerical Setup

The 2-D FDTD-based numerical investigations are
described as follows. This simulation introduces the four
types of MRI-derived phantoms as—Class 1 (mostly fatty,
ID = 012804), Class 2 (scattered fibroglandular, ID =
070604PA1), Class 3 (heterogeneously dense, ID = 062204),
and Class 4 (very dense, ID = 012304)—which are available
from published repositories [39]. The frequency dispersion
model is expressed as the single-pole Debye as follows:

Age oA
Echye(a)§ €0y A€, 05) = 8o + ———— + (16)
1+ jor  jowe
where 7 is the relaxation time and is fixed at T = 1.5 x

10~ 5. The main Debye parameters (e, A€, 05) could be
accurately associated with the MRI image via piecewise linear
mapping [40]. Then, the scattered data are generated using
the 2-D FDTD, where the above single-pole Debye dispersion
model is introduced. Fig. 4 illustrates the spatial profile for
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TABLE 1
DEBYE PARAMETERS FOR EACH TISSUE
Tissue type €oo Ae | os [S/m]
Skin 159 | 23.8 0.83
Adipose (median) 3.1 1.6 0.05
Fibroglandular (median) | 13.8 | 35.6 0.74
Fibroglandular (high) 18.3 | 43.0 1.08
Cancer 22.0 | 51.6 1.30

two of the Debye parameters as €., and oy of four different
phantoms, and Table I shows the assumed range for the Debye
parameters of each tissue, which is dependent on the associ-
ated MRI image strength. Cancerous tissue with dimensions
of 6 x 6 mm is located at the center of each phantom, with
the Debye parameters of (e, A€,05) = (22.0,51.6, 1, 3),
derived from a previous study [40]. The ten transmitters
(ideal point sources) and receivers configure a circular array,
and all their combination data are input into the inversion
scheme. The Gaussian modulated pulse with 1.27-GHz center
frequency and 1.91-GHz bandwidth is excited as the source
current. All the cell sizes of the FDTD, CI, and CSI are
unified as 2 mm, where the FDTD code was modified from
the original in-house code by the University of Wisconsin—
Madison, Madison, WI, USA.

B. Results: Tomography — Radar (CSI-Enhanced CI)
First, the CI image reconstruction is presented. We first
assume a noiseless situation to assess the systematical error in
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(k) Class 3: epg = 10. (1) Class 4: epg = 10.

each process. For the method comparison, the traditional CI
results are introduced, which assumes that the breast media
forms a homogeneous profile with the representative complex
permittivity [13]. Here, for clutter suppression in the tradi-
tional and proposed CI schemes, we assume a simple breast
model comprising only skin and adipose media, as shown in
Fig. 5. Fig. 6 shows the results obtained from the CI images,
where the three different relative permittivities are assumed to
be epg = 6, 8, and 10, because the reconstruction accuracy of
the CI image is mostly dependent on the relative permittivity
€bg, Which is converted to the propagation speed v, in the
breast media as vy, = Uﬂr/ﬁbg with that in the air as vg.
Here, all the imaging areas, in Fig. 6, are truncated on the
boundary between the skin of the breast and air. Notably, in the
traditional CI image, the clutter signal from the background
media (see Fig. 5), is generated in the FDTD, and eliminated.
As shown in Fig. 6, the traditional CI image could not provide
an accurate location or area of the high contrast object of
fibro-glandular or cancer tissues, which are mainly caused by
a mismatch in the relative permittivity.

Next, the reconstruction results of the CSI-enhanced CI
are presented as follows. In this case, we investigate the two
conditions, with regard to the calculation of Green’s function
in (5) and (6) and the clutter suppression in (7). In Cond. 1, the
total fields ET(a) r; rr) and the scattered fields Es(a) rr, rr)
are given by the FDTD method, that is, the ideal case, where
referential information is input to the enhanced SAR recon-
struction in (8). On the contrary, in Cond. II, ES(w; rr, rr) and
ET (w, r; rr) are calculated by the optimization output of the
CSL Here, the convergence criteria of the above CSI process
is determined by the maximum iteration number, which is set
to 1000 in this case. Table II summarizes the definitions of
these conditions. Fig. 7 illustrates the reconstruction results of
the total fields in the ROI cells at the specific transmitter,
compared with the FDTD data, and it demonstrates that
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Fig. 7. Reconstruction profile of the total field in the ROI area at the
specific transmitter at Class 1 and the frequency at 1.27 GHz. (a) Real part.
(b) Imaginary part.

TABLE II
DETAILS OF EACH CONDITION OF THE PROPOSED METHOD

Green’s functions Total fields
in (5) and (6)) in (7)
Cond. 1 FDTD FDTD
Cond. 11 CSI CSI

the CSI can optimize the total field in all ROI cells with
considerable similarity to that provided by the FDTD (i.e.,
reference data). Thus, Green’s functions in (5) and (6) could
be accurately provided for post-CI processes.

Next, Fig. 8 shows the reconstruction results using the
proposed method in both Cond. I and II, where each imaging
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area is truncated on the boundary between the skin of the
breast and air. As shown in the results in Fig. 8, the proposed
CI schemes reconstruct the high energy around the boundary
area between the adipose and fibroglandular areas, because
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Fig. 10. Deconvolution results of the CSI-enhanced CI images for each class.
First column: Cond. I. Second column: Cond. II. (a) and (b) Class 1. (c¢) and
(d) Class 2. (e) and (f) Class 3. (g) and (h) Class 4.
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the main reflection inside the breast is caused by the contrast
between these tissues. Although the cancerous tissues are
buried in the responses of the fibroglandular area, it provides
an appropriate initial estimate for the post-CSI quantitative
imaging to distinguish the tumor and fibro-tissues based on the
dielectric profile. In addition, the CI images in Cond. II has
a differential response from Cond. I, that is, the referential
CI image, because of inaccuracy in generating the total field
in the ROI area. These differences are more distinct in the
dense cases, such as Class 3 or 4, and this is because a high
contrast profile requires more iteration numbers to reach a
certain accuracy of total field optimization.
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C. Results: Radar — Tomography (CI-Enhanced CSI)

1) Deconvolution Results: Here, the Cl-enhanced CSI
approach is investigated as follows. First, the initial estimate
scheme using the CI image with the Gaussian function-based
deconvolution is assessed as follows. In this case, parameters
o1 and o used in (9) are optimized under the criteria with
the following root mean square error (RMSE) between the
ground-truth profile and the output CI images as

1 Zizl’ltrue(ri) _i(ri)’z

Errci(o1, o) = —
NI Zi:l |Itrue(ri)|2

Although the metric Errcy(o, @ does not directly evaluate the
spatial resolution of the radar image, it can assess the accuracy
of the initial estimate of the post-CSI processing, that is,
the similarity to the actual dielectric profile. Fig. 9 shows
the evaluations of the aforementioned errors Errci(oy, ) as
a function of o7 and « assuming that the single point-shape
object (€, A€,05) = (23.3,43.0,1.03) is located in the
center of the breast with a skin-adipose-based background in
Class 1. This figure shows that there is an optimal combination
of these parameters at the minimal RMSE, and we determine
that the optimal parameters of 6y and & are 50 mm and

a7)

0.7, respectively. Note that, this target model corresponds
to the PSF. While we cannot optimize the parameters for
unknown arbitrary breast profiles, a general radar image,
including a response from fibroglandular or cancer tissues,
is generally approximated as a convolution image between
the actual contrast function profile x(r) and the PSF. Thus,
we use the optimal parameter in assuming the above PSF
model in the following analysis. Fig. 10 shows the decon-
volution results of the CI images of Fig. 8 using the optimal
parameters of 61 and & for both Conditions I and II. The
results in Fig. 10 demonstrate that the deconvolution scheme
in Section III-B successfully upgrades the spatial resolution of
the CI images, which contributes to the postinitial estimation
process. However, some sidelobe responses appeared outside
area of the breast area, which could be truncated from the ROI.
In addition, this approach is based on linear approximation,
and there are also some unnecessary responses due to the
nonlinear effect.

2) Reconstruction Results: As the next step described in
15, the initial estimate for the post-CSI reconstruction is deter-
mined using the deconvoluted CI image as in Fig. 10. Fig. 11
shows the minimized CSI cost function for each selected S
defined in (15) for each condition. Table III summarizes the
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Fig. 14. Reconstruction results for the real part of the complex permittivity at 1.27 GHz in each method and class.

TABLE III

OPTIMIZED B IN DETERMINING THE INITIAL ESTIMATE
WITH CSI COST FUNCTION

Class 1 | Class 2 | Class 3 | Class 4
Cond. 1 0.1 0.1 0.4 0.6
Cond. 1T 0.1 0.1 0.5 0.5

optimized parameters 5 using 15 in each class. In the case of
Class 1 or 2, namely, the lower density of the fibroglandular
area, a low B is selected as the optimal value because the
adipose area with a low dielectric contrast is dominant in
either class. Contrarily, focusing on Class 3 or 4, that is, highly
heterogeneous media, a high 8 becomes optimal because the
initial estimate should have a high contrast profile, and those
effects are almost common in Cond. I and II. )

Figs. 12 and 13 show the initial estimate using each f
in (13), as to the two of Debye parameters as €., and o,
respectively. Figs. 12 and 13 show that the proposed scheme
could provide an appropriate initial estimate in each class,
which is exploited in the CSI reconstruction. Figs. 14 and 15
show the reconstruction results of complex permittivity for

real and imaginary parts, respectively, in each method, and
condition. Focusing on the result in the original CSI, that is,
without using the Cl-based initial estimate, it considerably
suffers from inaccuracy, especially in highly heterogeneous
models such as Class 3 or 4, because the optimized solution
in the original CSI would fall into the local optimal by starting
from vacuum-based initial estimates, and could not reach the
global optimum, particularly for the area with high contrast
function. The results in Figs. 14 and 15 also confirm that
the accuracy of the reconstruction results using the proposed
method is significantly enhanced by those obtained using the
original CSI scheme, by starting from a more accurate initial
estimate, especially in Classes 3 and 4. Tables IV and V show
the quantitative error analysis for the reconstruction results,
with the RMSE:s for each real and imaginary part of the com-
plex permittivity at 1.27 GHz. The results in Tables IV and V
also demonstrated that the proposed approach considerably
suppresses the RMSE values. Note that, the accuracy improve-
ment in Class 1 and 2 is limited compared with those obtained
in the case of 8 = 0, because it starts the initial estimate
with lower § as in Table III. On the contrary, in the cases of
Class 3 or 4, namely, a highly heterogeneous profile, the initial
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Fig. 15.

TABLE IV

RMSE OF REAL PART OF COMPLEX PERMITTIVITY AT 1.27 GHz,
IN EACH CLASS AND METHOD

Reconstruction results for the imaginary part of the complex permittivity at 1.27 GHz in each method and class.

TABLE V

RMSE OF THE IMAGINARY PART OF COMPLEX PERMITTIVITY AT
1.27 GHz, IN EACH CLASS AND METHOD

.. Proposed CSI .. Proposed CSI
Original CSI B=0 Cond. I Cond. II Original CSI B=0 Cond. I Cond. II
B=8 =2 =8 =5
Class 1 8.82 5.16 5.13 5.18 Class 1 2.98 1.80 1.71 1.72
Class 2 10.89 8.14 8.08 8.21 Class 2 4.08 3.18 3.01 3.08
Class 3 24.56 23.50 12.67 12.71 Class 3 9.59 9.52 6.44 6.70
Class 4 25.86 24.52 16.50 15.30 Class 4 18.1 20.08 8.68 8.03
€ . €
estimate with higher 8 contributes to accuracy improvement, Pim = m’e est (19)
compared with those obtained by 8 = 0, that is, the advantage Hetme ” ”etme ”
of the processing in Section III-B. where €' . and € denote the spatial profile of the real

3) Error Analysis: As another quantitative analysis, the
correlation coefficients, denoted as p, and p;, between true
and reconstructed profiles, for both real and imaginary parts
of complex permittivity, are introduced as

’Rt
— es (1 8)
~ TethelTeel

étrue "€

part of complex permittivity of the ground truth and recon-
structed 1mages respectively. €;,. and €, also denote those
of the imaginary parts of complex permittivity of the ground
truth and reconstructed images, respectively. The indexes
pre and piy, quantitatively assess the similarity between true
and estimated profiles, especially for a similarity of area
with higher contrast, that is, cancer and fibroglandular area.
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TABLE VI
pre AT 1.27 GHz, IN EACH CLASS AND METHOD
. Proposed CSI
Original CSI 5o CondT | Cond Tl
B=5 B=7
Class 1 0.553 0.873 0.875 0.873
Class 2 0.574 0.790 0.793 0.785
Class 3 -0.060 0.213 0.743 0.740
Class 4 0.098 0.300 0.563 0.637
TABLE VII

Pim AT 1.27 GHz, IN EACH CLASS AND METHOD

. Proposed CSI
Original CS1 5 o CondT | Cond Tl
=5 =5
Classl 0.563 0.867 0.881 0.880
Class2 0.404 0.689 0.726 0.714
Class3 0.094 0.235 0.368 0.320
Class4 0.083 0.214 0.254 0.227

Tables VI and VII show the evaluations of p, and pj, for
each method and demonstrate that our proposed scheme
significantly enhances the similarity of the dielectric profile,
compared with those obtained by the original CSI scheme and
the case without using the CI image (8 = 0) in the initial
estimate, in particular, of Class 3 or 4. There are some negative
values in pr (e.g., the original CSI in Table VI), and it is
predicted that there are many cells with an inverse relationship
between true and reconstructed dielectric properties. Note that
the accuracy of the imaginary part in Class 3 or 4 is relatively
lower than that of the real part. This is because these classes
have high lossy media with densely distributed fibroglandular
tissues, which makes it difficult to extract the scattered signal
from the deeper area of breast media.

4) Case for Different Cancer Locations: Notably, our pro-
posed scheme does not assume nor use prior knowledge of the
cancer location. To demonstrate the above, we investigate the
cases with different cancer cell locations located at off-center
areas of the breast. Here, as a representative model for lowly
and highly dense breasts, Classes 1 and 4 are investigated
as follows. Fig. 16 shows the reconstruction results of the
CSI-enhanced CI image and its deconvolution image, which
could offer accurate focus on the actual cancer positions,
especially for the Class 1 model. Fig. 17 also shows the
reconstruction results obtained by the original CSI (without
CI prior) and the proposed CSI method, where Condition II is
assumed. In this case, the optimized 8 for Classes 1 and 4 are
0.1 and 0.6, respectively. Table VIII also shows the RMSE and
p at the off-centered cancer case. These results demonstrated
that our proposed scheme applies to different locations of the
cancer tissues, as any prior knowledge of the cancer location
is not used in either the CI or CSI processing schemes.

D. Case for Additive Noise

In this section, the case with additive noise is investigated to
assess the sensitivity to noisy components. In this simulation
model, the cell sizes in both the forward and inverse problems
are set to the same dimension as 2 mm, which might incur the
so-called inverse crime as in [41]. However, in some previous
works [41], this issue would be mitigated, by considering the
situation with additive noise as follows. White Gaussian noises
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Fig. 16.  Reconstruction results for CI and CSI images at 1.27 GHz in
each method at the case for off-center located cancer. First column: Class 1.
Second column: Class 4. (a) and (b) Ground truth. (c) and (d) CI. (e) and
(f) Deconv. Cl.

TABLE VIII

RMSE AND p IN EACH CLASS AND METHOD AT THE
OFF-CENTERED CANCER CASE

Class RMSE P
Rle] [ Sl [ Rl [ Se]
Original CSI | Class 1 | 8.96 3.08 | 054 | 0.52
Class 4 | 2599 | 17.26 | 0.14 | 0.15
Proposed CSI | Class 1 | 5.41 1.67 | 0.86 | 0.87
Class 4 | 14.50 | 7.67 | 0.68 | 0.27

are added to the observed total fields in the time domain.
The signal-to-noise ratio (SNR) is determined as the ratio of
maximum signal-to-noise power (variance of the Gaussian dis-
tribution, and the signal includes reflection responses from the
skin surface, which would be much stronger than those from
the inner area of the breast, such as fibroglandular, or cancer
tissues, because we do not assume a matching coupling media
to suppress the skin reflection. As in Section IV-C4, the two
representative cases Class 1 and 4 are investigated as follows.
We assume the two cases as having SNR values of 30 and
40 dB, respectively. While these SNR levels are apparently
high, they are available in the actual measurement scenario,
such as in [38], Fig. 18 shows an example of the received
signal assuming the Class 1 at each SNR level, where the
responses with, or without skin reflection elimination are
illustrated for a noise-free situation. This figure shows that
the response from the inner area (yellow) is considerably less
than that of skin reflection (red) and is buried into the noise
component, especially for an SNR of 30 dB. Notably, if we
calculate the SNR using only signals from the inner area,
the actual SNR levels of Fig. 18(a) and (b) are estimated
to be 4 and 14 dB, respectively, that is, their powers are
—26 dB less than that of skin reflection. Figs. 19 and 20
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Fig. 17. Reconstruction results for CI and CSI images at 1.27 GHz in each
method at the case for off-center located cancer. First column: 9i[e]. Second
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Fig. 19. Reconstruction results for CI and CSI images at 1.27 GHz in each
method at the case in SNR of 40 dB. First column: Class 1. Second column:
Class 4. (a) and (b) CI. (c) and (d) Deconv. Cl. (e) and (f) Proposed CSI,
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Examples of reflection responses at each SNR level. Blue denotes

the response with additive noise. Red and yellow denote the responses without
and with skin reflection elimination, respectively, in the case of the absence
of noise. (a) SNR = 40 dB. (b) SNR = 30 dB.

show the qualitative radar images by the CSI enhanced CI
and its deconvolution image and illustrates the quantitative
tomography images by the original and the proposed CSI
methods, at the SNR levels of 30 and 40 dB, respectively.
Table IX summarizes the RMSEs and p for each reconstructed
real and imaginary parts of complex permittivity. As shown in
these results, although the reconstruction results would suffer
from inaccuracy for both CI and CSI images especially at the
SNR of 30 dB, especially for Class 1, they could provide a
certain level of accuracy in the case of an SNR of 40 dB. This
is because the CI or CSI images highly depend on the SNR
for the inner area, which is less than 10 dB in an SNR of
30 dB.

TABLE IX
RMSE AND p IN EACH SNR LEVEL
Class RMSE p
Rle] [ Sle] | Re] | Se]
SNR =00 dB | Class 1 5.79 2.53 0.833 | 0.681
Class 4 | 18.34 | 10.22 | 0.409 | -0.091
SNR =40 dB | Class 1 5.08 1.73 0.873 | 0.855
Class 4 | 15.05 9.06 | 0.648 | 0.052
SNR =30dB | Class 1 | 22.67 6.70 | 0.301 | 0.023
Class 4 | 15.94 | 10.17 | 0.612 | -0.008

Furthermore, Figs. 21 and 22 also show the box plots of
the RMSE for the real and imaginary parts of complex per-
mittivity in Classes 1 and 4, respectively, where ten different
patterns of additive noises are investigated to provide a sta-
tistically convincing conclusion. As shown in these analyses,
there are nonnegligible variances of RMSEs, especially in
the case with 30-dB SNR (4-dB SNR in considering only
inner area signal), this is because the randomness of the
noise component affects the optimal 8 to generate an initial
estimate. By assuming a realistic scenario, it is promising
to retain a sufficient SNR (over 10 dB) for the inner area
by using the matching media, such as oil, to penetrate the
inner area of the breast by suppressing the skin reflection
signal.
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Fig. 20. Reconstruction results for CI and CSI images at 1.27 GHz in each
method at the case in SNR of 30 dB. First column: Class 1. Second column:
Class 4. (a) and (b) CI. (c) and (d) Deconv. Cl. (e) and (f) Proposed CSI,
N(e). (g) and (h) Proposed CSI, J(e).

E. Case for Multiple Frequency (MF) Extension

In the previous evaluation for the CSI-based reconstruc-
tion, we assume only a single frequency (SF) at 1.27 GHz.
A number of studies revealed that MF inversion is promis-
ing for enhancing the reconstruction accuracy, especially
in noisy situations, by alleviating the ill-posed conditions
or averaging effects over frequencies. Here, we introduce
the simple integration scheme for multiple-frequency results.
At first, we obtain several complex permittivity results for
each frequency. Then, these results are converted to the Debye
parameter by minimizing the residual for the mean square
errors, that is, the Debye fitting is applied. In this case,
the two representative model Classes 1 and 4 are introduced
in the absence of noise. Figs. 23 and 24 show the real
and imaginary parts of the complex permittivity at each
frequency in Class 1, respectively, obtained by the SF and
MF inversion schemes. Figs. 25 and 26 also show the same
views and conditions as those in Figs. 23 and 24, but for
Class 4. Table X also shows the quantitative error analysis
for this case. These results demonstrated that our proposed
scheme using multifrequency data considerably enhances the
reconstruction results in both real and imaginary parts of
complex permittivity. This is because the variance of several
SF results can be suppressed by the smoothing effect over MF
results.
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Fig. 21. Boxplots in each SNR level and method at Class 1. (a) RMSE for
the real part. (b) RMSE for the imaginary part. (c) p for the real part. (d) p
for the imaginary part.
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TABLE X

RMSE AND p FOR SF AND MF INVERSION SCHEMES IN THE
PROPOSED METHOD AT CONDITION II

Class RMSE P
Rle] [ Sle] | Re] [ STe]
Class 1 | 1.27GHz | SF | 5.18 | 1.72 | 0.87 | 0.88
MF | 5.11 1.95 | 0.88 | 0.85
219 GHz | SF | 475 | 2.02 | 0.89 | 0.88
MF | 5.14 | 1.91 | 0.88 | 0.87
311 GHz | SF | 591 | 250 | 0.81 | 0.63
MF | 5.19 | 2.02 | 0.88 | 0.88
Class 4 | 1.27 GHz | SF | 1530 | 8.03 | 0.64 | 0.23
MF | 16.84 | 8.63 | 0.58 | 0.06
219 GHz | SF | 16.52 | 850 | 0.43 | -0.08
MF | 1693 | 6.52 | 0.59 | 0.19
3.11 GHz | SF | 20.59 | 6.07 | 0.41 | 0.19
MF | 17.08 | 5.96 | 0.59 | 0.32

F. Computational Complexity Comparison

Here, we investigate the computational complexity of each
method. Table XI shows the complexity and the actual run
time for each process, using an Intel Xeon Silver 4110 CPU
2.10 GHz with 384 GB RAM. Here, Nge, Npgr, and Nrop
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Fig. 22. Boxplots in each SNR level and method at Class 4. (a) RMSE for
the real part. (b) RMSE for the imaginary part. (c) p for the real part. (d) p
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TABLE XI

COMPUTATIONAL COMPLEXITY AND ACTUAL RUN
TIME IN EACH PROCESS

Method Step Complexity Run time
Original CSI O(Nele Nro1 Nite) 800 s
1,2 O(NeleNROINFRNite) 9200 s
Proposed method | 3.4,5 O(Neie Nro1 NFR) 1500 s
6 O(NeleNROINiteNB) 8000 s
7 O(Neie Nro1Nite) 800 s

express the numbers of elements, frequency samples, and cells
in the ROI, respectively, which are the same for generating
the CI and CSI images. N, denotes the number of iterations
required in the CSI. Ng denotes the sampling number to
determine S in (15) in Section III-B. Here, in both the original
and proposed methods, N = 100, Npr = 58, Nror = 2594,
Ng = 11, and Ny = 1000, are set. As shown in this figure,
the processes of Steps 2 and 6 require large computational
times, because, in Step 2, the total fields in the ROI should
be optimized at each frequency sample to obtain sufficient
range resolution in the CI image, that is, an adequately wide
frequency band is needed to determine the Green’s function
and clutter response. Meanwhile, in Step 6, the total fields in
the ROI are also optimized at each 8 to determine an optimal
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Fig. 23. Reconstruction results for the real part of complex permittivity with
SF and MF inversion-based proposed method at each frequency at Class 1.
(a) SF at 1.27 GHz. (b) SF at 2.19 GHz. (c) SF at 3.11 GHz. (d) MF at
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Fig. 24. Reconstruction results for the imaginary part of complex permittivity
with SF and MF inversion-based proposed method at each frequency at
Class 1. (a) SF at 1.27 GHz. (b) SF at 2.19 GHz. (c) SF at 3.11 GHz. (d) MF
at 1.27 GHz. (e) MF at 2.19 GHz. (f) MF at 3.11 GHz.
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Fig. 25. Reconstruction results for the real part of complex permittivity with
SF and MF inversion-based proposed method at each frequency at Class 4.
(a) SF at 1.27 GHz. (b) SF at 2.19 GHz. (c) SF at 3.11 GHz. (d) MF at
1.27 GHz. (e) MF at 2.19 GHz. (f) MF at 3.11 GHz.

initial estimate. However, the complexity of this process could
be significantly reduced by the undersampling scheme along
the frequency domain. That is, if we obtain undersampled
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Fig. 26. Reconstruction results for the imaginary part of complex permittivity
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at 1.27 GHz. (e) MF at 2.19 GHz. (f) MF at 3.11 GHz.

data along the frequency band, these data can be accurately
upsampled by using the Sinc function-based interpolation
scheme because the sampling interval in the frequency domain
(data length in the time domain) is generally sufficient to
satisfy the above Nyquist criteria. The above reduction scheme
should be implemented in our further study.

V. CONCLUSION

This article proposes a bidirectional processing scheme
between radar and tomography for the quantitative microwave
imaging of breast media. The traditional Cl-based radar
approach suffers from inaccuracy due to the heterogene-
ity of background media, which incurs an inaccuracy for
posttomography-based quantitative reconstruction. Then, the
CSI scheme was introduced as a tomography approach to
enhance the radar-based CI image by providing an accurate
form of the Green’s function, assuming the heterogeneous
skin-adipose media. This method also contributed a clut-
ter suppression, particularly for the skin reflection signal,
to generate these clutters using the DIE by exploiting the
CSI outputs, namely the total fields in the ROI, thereby
corresponding to the process of “tomography — radar.”
The numerical test validated that the CSI-based total field
optimization could provide an accurate estimate of Green’s
function and clutter response at the same level as FDTD-based
calculation. In addition, the proposed scheme introduced the
CI image-enhanced CSI scheme to reproduce the quantitative
reconstruction of the dielectric profile, formed as single-pole
Debye parameters. The 2-D Gaussian function deconvolution
scheme enhanced the equivalent spatial resolution of the CI
image, which was exploited for an appropriate initial estimate
for the post-CSI optimization sequences. This is the process
called “radar — tomography.”

Numerical tests using the MRI-derived realistic phan-
tom and FDTD analysis demonstrated that the proposed
bidirectional processing scheme successfully improved the
reconstruction accuracy of the dielectric property, even for
heterogeneous and high-contrast breast media. Notably, we did
not introduce any lossy-matching (coupling) media to suppress
the skin reflection response, which would be promising to
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enhance the SNR assuming realistic cases in further inves-
tigations. Furthermore, we should note the limitations of the
2-D simulation model for realistic scenarios. In this study,
we assumed a 2-D TM mode propagation, which could be
modeled as a linear polarization model, such as a dipole
antenna, in the 3-D model. However, some works like [42]
demonstrated that the scattered field includes not only copo-
larized (E.), but also cross-polarized (E, or E,) components,
especially for highly heterogeneous media. Thus, we need all
three components of the electric total fields in the ROI, and
the ill-posed condition would be extremely severe because
of the considerably larger number of unknown cells. Our
ongoing studies include 3-D model extensions, where the
undersampling or Fourier basis scheme would be introduced
to drastically decrease the number of unknowns, and the
experimental, or clinical investigations are included in our
future scope.
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