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SUMMARY We introduce a target recognition scheme based on mul-
tiple signal reflections assuming a non-line-of-sight (NLOS) scenario for
a millimeter wave (MMW) radar used in automotive sensor applications.
For a pedestrian or a cyclist jumping out from the rear of an obstacle,
such as a parked vehicle, a target recognition scheme in a NLOS region is
highly required for collision prevention, especially in driving support and
autonomous driving systems. Since the diffraction signal obtained from a
NLOS region is too weak for identifying a specific target type, particularly
at high frequencies and under full NLOS conditions, we introduce a target
recognition approach based on multiple reflections. Two machine learning
approaches, based on the support vector machine (SVM) and long-short-
term memory (LSTM) algorithms are introduced with only single transmit-
ter and receiver data. The experiments conducted using a 24-GHz band
MMW radar in an actual road scenario demonstrated that the proposed ap-
proach can accurately recognize a real human body from an artificial object
by exploiting the unique characteristics of reflected signals.
key words: Millimeter-wave (MMW) radar, Automotive radar, Non-line-
of-sight (NLOS) detection, Pedestrian detection, Multiple reflection, Su-
pervised machine learning, Long-short-term memory (LSTM)

1. Introduction

In the emerging automated driving and advanced driver-
assistance systems, there is an urgent demand for establish-
ing a reliable sensing technology. Millimeter wave (MMW)
sensors, namely, radar sensors, have become essential in op-
tically challenging situations such as adverse weather, dark-
ness, or strong back light, and there are a number of studies
focusing on the radar imaging scheme [1–6] However, the
MMW radar exhibits an inherent drawback in terms of spa-
tial resolution, which is of the order of cm, even when the
high MMW frequency (60 or 79 GHz) bands are employed
[7,8]. Specifically, in far-range situations, i.e., > 10 m from
the radar site, the detection or recognition of a human body
from other artificial objects, such as guardrails and barri-
ers, becomes particularly challenging, because of the lower
cross-range resolution than that in near-range situations.
Several studies on pedestrian detection using micro-Doppler
signal-based recognition, have been reported [9–12], where
each part of the human body (e.g., arms and legs) exhibits a
different and periodical motion, leading to a Doppler veloc-
ity variation during slow-time measurements. Furthermore,
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the gait level recognition of a human body has been investi-
gated using a MMW radar in short-range scenarios [13–16]
or through-the-wall situations [17–20]. Several studies have
shown that a micro-Doppler signature can provide a sig-
nificant feature for human–vehicle classification [21–25].
However, these studies focused on line-of-sight (LOS) tar-
gets. Recently, there has been a strong demand for non-line-
of-sight (NLOS) target recognition or detection, because a
child or a cyclist may jump out suddenly from the rear of
a parked vehicle, and the driver or the automated braking
system may not respond in time to prevent the accident.

Recent studies on MMW radar-based NLOS sensing
scenarios, such as [26–28], have been reported. In these
studies, imaging or localization schemes were employed for
a human body hidden in the NLOS region. Specifically, a
radar imaging method exploiting multiple reflections in a
complicated indoor environment was proposed in [29–31]
and an imaging or localization scheme for a human body be-
hind a wall was introduced in [32]. In addition, the study in
[33] assumes a scenario wherein a vehicle suddenly emerges
from an NLOS area shadowed by the buildings. In this con-
text, multipath scattering waves are induced by strategically
placed reflectors. The study experimentally investigates the
relationship between the reflector angle and the signal-to-
noise ratio (SNR). However, these studies did not deal with
the target identification or recognition problem. Conversely,
our previous study [34] demonstrated that there is a signif-
icant difference in the reflection responses of a complex-
valued radar backscattered signal along slow-time measure-
ments. Specifically, the scattered signal response obtained
from a static human body includes a phase rotation due
to a mm-scale displacement caused by respiration, heart-
beat, and posture control. In [34] a direct target recognition
scheme employing the abovementioned signal reflection re-
sponses was presented. In this scheme, several feature vec-
tors, such time-series or short-time Fourier transform data,
are inserted into the support vector machine (SVM). No-
tably, this study also demonstrated a high recognition rate,
even in the NLOS scenario case, i.e., the diffracted signal
could be used for target recognition at 10 m away from the
radar. However, this study focused only the diffracted sig-
nal, and the experimental validation was performed in an
ideal environment, i.e., an anechoic chamber. Therefore, the
detection of a diffraction signal would be much smaller in
a real road scenario because the radar data include a num-
ber of clutter components such as roads, trees, buildings, or
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other surrounding objects.
In a real-case scenario, a child or a cyclist may sud-

denly appear from spaces between parked vehicles. In
this case, multiple scattered signals between the pedestrian
and the parked vehicles can be distinctly obtained, par-
ticularly in the NLOS case. Thus, to address the above-
mentioned issues in [34], this study introduces a target
recognition scheme based on multiple scattering compo-
nents that enhances the recognition accuracy of pedestrians
hidden in NLOS areas, where the use of multiple reflec-
tions considerably enhances the signal-to-noise ratio (SNR)
compared with that obtained using the diffraction signals
in [34]. Additionally, we introduce the long-term-short-
memory (LSTM) algorithms [35], one of the recurrent neu-
ral network (RNN) scheme, to identify a target using time-
serious data of multiple reflection signals.

The main contributions of this paper are the following:

1. Multiple reflection signals are initially used to distin-
guish a pedestrian (target) from an artificial object in
cases where the target is in the NLOS region between
obstacles (e.g., parked vehicles).

2. This approach can recognize a pedestrian in an NLOS
area more accurately than the use of diffraction signals
only. In particular, the SNR is considerably improved
by observing multiple reflection signals.

3. Phase rotation due to a pedestrian’s respiration or pos-
ture control can be clearly recognized from man-made
objects using complex time-series data and the SVM or
LSTM based learning scheme successfully identifies a
pedestrian target even in deep NLOS area.

The experiments conducted using a 24-GHz band MMW
frequency-modulated continuous- wave (FMCW) radar and
assuming a real road environment. The findings demonstrate
that our scheme, which uses multiple reflection signals, sig-
nificantly improves the recognition accuracy between a real
pedestrian and a dummy object in an NLOS area.

2. Method

2.1 Extractions on Diffraction Signals

Our previous study [34], introduced diffraction-signal-based
NLOS target identification, whose methodology is briefly
described as follows. In this paper, we employ a FMCW
radar; hence, the repeatedly transmitted signal is recorded at
the receiver, with a constant pulse repetition interval (PRI).
The complex-valued received signal is s(R, τ), where τ de-
notes the measurement slow time discretized by the PRI.
R = ct/2 where c is the speed of light and t is the fast
time. We can obtain the target range R′ by extracting the
local maxima of s(R, τ) as to R. Notably, the study in [34]
demonstrated that there is a distinct signature of a static hu-
man body in the complex-valued signal reflection responses.
These signatures primarily result from human body dis-
placements owing to breathing or posture control. Because
they are characterized in temporal variations in the phase or

(a) Geometry

(b) Scattered data

Fig. 1: (a): Conceptual illustration of the proposed method
for diffraction and multiple reflection paths in typical NLOS
scenario. (b) : Example of range-τ profile as s(R, τ), where
the time-delay in fast time direction, namely, R of the mul-
tiple reflection signal can be observed at the certain range as
RM.

magnitude of the complex-valued scattered signals, we in-
troduce multiple feature vectors, particularly for extracting
a temporal or frequency variations, to facilitate target identi-
fication between a human body and an artificial object, such
as a cylinder. At first, we introduce the following complex-
valued feature vector x as the time variance in the τ direc-
tion:

xS ≡
(
s(R̃, τ0), s(R̃, τ1), . . . , s(R̃, τN )

)
(1)

In our previous study [34], five types of features are
introduced to characterize the temporal variation of s(R, τ)
along τ . In the following, i denotes the index number of the
i-th slow-time sample as τi.

Feature 1: s(R, τ).

X1[i] ≡ (x[i]) . (2)

where x[i] denotes the i-th components of the vector x.

Feature 2: s(R, τ) and ∂s(R,τ)
∂τ .

X2[i] ≡
(
x[i],

x[i+ 1]− x[i− 1]

τ [i+ 1]− τ [i− 1]

)T

. (3)
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where T denotes the transpose operator.
Feature 3: A number of time shifted data of s(R, τ) along

τ direction.

X3[i] ≡ (x[i], x[i+ 1], · · ·x[i+M ])
T
. (4)

where M denotes the length in the time shift.
Feature 4: Short time Fourier transform (STFT) of s(R, τ)

in the τ direction.

X4[i] ≡ FDFT
[
(x[i], x[i+ 1], · · ·x[i+M ])

T
]
,(5)

where FDFT [∗] denotes the discrete Fourier transform
operator, and M denotes the length of the DTFT.

Feature 5: Instantaneous frequency and spectrum entropy
response of s(R, τ) in the τ direction.

X5[i] ≡
[
F [i], F [i+ 1], · · · , F [i+M −N − 1]
G[i], G[i+ 1], · · · , G[i+M −N − 1]

]
(6)

where F [i] and G[i] denote the instantaneous fre-
quency and the spectral entropy [36], respectively, that
are mostly used to extract the feature a time-frequency
data as:

F [i] ≡
∑N

j=1 j P [i, j]∑N
j=1 P [i, j]

(7)

G[i] ≡ −
N∑
j=1

P [i, j] log2 P [i, j] (8)

P [i, j] ≡ S[i, j]∑N
j=1 S[i, j]

(9)

holds. Here, S[i, j] denotes the short time DFT of x[i]
with the length of M , and N is the data length, which
determines the temporal resolution of F [i] and G[i].

The rationale behind selecting these features is as follows.
Feature 1 has a minimal input dimension; however, it does
not include temporal variation along τ in each input vec-
tor. The other features (Features 2, 3, 4, and 5) account
for the temporal variation of responses to extract a unique
pedestrian features caused by breathing, posture control, and
similar movements, which differ from those of artificial ob-
jects. In particular, Feature 2 includes a temporal differen-
tial along τ , corresponding to the instantaneous frequency;
however, it is essentially sensitive to random noise. Feature
3 includes a number of temporal data, thus retaining some
temporal variation, in phase or amplitude. Feature 4 (DTFT)
denotes data using STFT along τ , thus directly character-
izing a unique feature in each target in the frequency do-
main. Feature 5 denote the instantaneous frequency and
spectral entropy, which extracts the first moment of the
power spectrogram, and power distribution in temporarily
varying frequency spectrum, respectively. The recognition
performance in Features 3, 4, and 5 depends on the selected
data length M , which should be determined considering the
balance between the number of input dimensions and the
necessary frequency resolution.

2.2 Extractions on Multiple Scattered Signals

Our previous study [34] demonstrated that high recognition
accuracy could be achieved, even under full NLOS condi-
tions. However, in the above study, only the diffraction sig-
nal from the object in the NLOS case was considered. In
assuming an actual road traffic scenario, where a diffraction
signal is buried under other interference signals originating
from other moving objects, e.g., swaying of the leaves of the
trees. In particular, in high-frequency radar systems, such as
79 GHz band, the diffraction effect is more alleviated, thus
increasing the difficulty of NLOS target identification.

To address these issues, in this study, we initially focus
on the multiple reflections between an object and other ob-
stacles, such as parked vehicles, telephone poles, guardrails,
walls, and other surrounding objects. Stronger multiple re-
flection components with a longer delay time are expected
than the corresponding diffraction signal components and
can be extracted from the received signal s(R, τ). Figure
1 shows a conceptual illustration of the proposed method.
Here, because the radar can accurately measure the sen-
sor–target distance by extracting the peaks of |s(R, τ)|, we
can also determine a specific range R̃M corresponding to
that derived from multiple reflection signals as

R̃M = arg max
R

1

T

∣∣∣∣∣
∫ T

0

s(R, τ)dτ

∣∣∣∣∣ (10)

where T denotes the total observation time along τ . Then,
the input vector in the proposed method is defined as:

xM ≡
(
s(R̃M, τ0), s(R̃M, τ1), . . . , s(R̃M, τN )

)
(11)

In post-machine learning, the proposed method also uses the
five feature vectors (Eqs. (2), (3), (4), (5), and (6)). Figure
3 shows the processing flow of the proposed scheme.

2.3 Machine Learning Based Object Identification

This section describes the machine learning schemes to
identify the object in the NLOS area, using the diffraction or
multiple reflection signals. As a promising learning scheme,
we introduce the two approaches, as SVM and LSTM, the
methodology of which are briefly described as follows:

2.3.1 SVM

As in [34], the above features are inserted into post-SVM
learning for target identification. SVMs are promising clas-
sification schemes that achieve nonlinear classification with
low complexity [37]. For fast nonlinear classification in a
hyperspace, an SVM uses a well-known technique where
the pairwise similarity between input data is directly mea-
sured using a kernel function. Here, we use the Gaussian
kernel detailed in [34] as:

K(x1,x2) = exp

(
−
∣∣x1 − x2

∣∣2
2σ2

)
(12)



4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 2: Structure and processing flow of the LSTM learning
scheme.

where σ expresses the standard deviation of the Gaussian
function. This scheme has been already introduced in the
literature [34], using the diffraction signal based feature vec-
tor as xS, while the case using the multiple reflection signal
xM has not been validated.

2.3.2 LSTM

The LSTM is one of the most efficient deep learning scheme
for time-serious data, in the recurrent neural network (RNN)
framework. Notably, while traditional RNNs inherently
struggle to retain long-term memory owing to the problem
of exploding and vanishing gradients, LSTM networks are
considered as a potential solution. Through the introduction
of additional gates to regulate the information in a hidden
state that is to be exported as output to the next hidden state,
LSTM networks improve the learning of long-term depen-
dencies. A LSTM structure is made of a number of cells, as
input, output, forget gates, as shown in Fig. 2, which con-
trols the flow of information from input to output cells. In
particular, forget gate determines to discard or retain the cell
information of the previous state, which enables a long-term
control of input information.

The processing flow of the LSTM is summarized as:

Step 1): Each gate and unit is fed with the input x[n] at
time-index n and the output of the memory unit h[n−
1].

Step 2): Cell state vector c[n − 1] is multiplied by the
output of the forget gate f [n] (to determine how much
of the past input is stored).

Step 3): The input unit i[n] is multiplied by the output
of the input gate g[n] (to determine how much of the
input value to put in).

Step 4): The outputs of Step 2 (f [n]◦c[n−1]) and Step
3 (i[n] ◦ g[n]) are added together to update the state of
the memory cell c[n].

Step 5): The state of the memory cell is passed to the

Fig. 3: Processing flow of the proposed target identification
scheme, by exploiting the multiple reflection signals.

output unit h[n].

Step 6): The output of the output gate o[n] is multiplied
by the state of the memory cell c[n] to obtain the output
from the memory unit h[n].

3. Result

3.1 Experimental Setup

This section describes the target recognition performance
using the proposed scheme and assuming a real univer-
sity road environment. A multiple-input multiple-output
(MIMO) FMCM radar produced by Sakura Tech Corp. op-
erating at a 24-GHz center frequency and 0.2 GHz band-
width is used in the experiment. Two transmitters and
four receivers forms the 1D array along the horizontal axis,
where the total module size is 104 mm in width, 76 mm in
height, and 6 mm in thickness; the maximum output power
is 8 dBm. Figure 4 shows the experimental setup, which in-
cludes the radar and a vehicle, which is considered as an ob-
stacle. The horizontal and vertical antenna beamwidths are
± 45 and ± 6.5 degrees, respectively, denoting a quasi two-
dimensional sensing scenario. Here, target signals acquired
at the same radar height can be observed in a wide range
of azimuth directions, and clutter signals from the ground or
other surroundings at different heights are suppressed by the
narrower vertical beamwidth. The radar height was 0.5 m.
The PRI was 2.1 ms, and the total pulse hits were 2125.

We considered two different target types. One was a
dummy doll (child) with a 1.23 m height, which was pro-
duced under the European New Car Assessment Program
(Euro NCAP) standards. The other was a male human tar-
get with a 1.70 m height wearing light clothes and stand-
ing still during the measurement process. These two targets
were placed at three different positions (A, B, and C). A
was located in front of the radar (namely, the LOS region
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(a) Geometry

(b) Optical view from radar

Fig. 4: Experimental setup.

within the center of the radar beam), where the radar–target
distance was 5.0 m. B and C were located in the NLOS re-
gion 2.96 m and 3.45 m far from A along x axis, and an
1.79 m height SUV vehicle obstacle was located at the right
side of the radar. To generate multiple scattering effects, an
aluminum shield was placed at 2.0 m behind the obstacle ve-
hicle (Fig. 5), referred to as rear shield. During the recogni-
tion pre-processing, all reflection data were subtracted from
the background data, which were obtained without consid-
ering any targets and obstacle vehicles. Table 1 summarizes
the conditions for each case.

3.2 Recognition Performance

3.2.1 Scattered Data in LOS Scenario

Initially, we investigated the responses of each target under
LOS conditions, namely, Cases 1, 2, and 3. Figure 6 shows
the reflection responses s(R, τ) and the scattered plots for a
specific range R̃ of targets in the LOS case, where each tar-
get is located at positions A, B, and C. To suppress the clut-
ter generated by the static objects, such as building walls,
roadside strips, and other obstacles, including parked vehi-
cles in the NLOS region, the zero-Doppler components were
eliminated in each case by subtracting the average value sig-
nals along the τ direction. As shown in this figure, the re-
sponses from the front side of the vehicle obstacle of a re-
flection from the ground or a building could be suppressed

Fig. 5: Experimental model, and conditions for training and
test data acquisition.

Table 1: Definition for each case. N/A: Not applied S: Sin-
gle scattering. M: Multiple scattering. Case 4 corresponds
to the situation in [34]. Case 5 corresponds to the situation
in the proposed method.

Case Abbreviation Target
location

Vehicle
obstacle Rear shield

1 A-LOS-S A N/A N/A
2 B-LOS-S B N/A N/A
3 C-LOS-S C N/A N/A
4 C-NLOS-S C Applied N/A
5 C-NLOS-M C Applied Applied

considerably by eliminating the zero-Doppler components,
which allows us to extract a nonstationary response caused
by a pedestrian’s respiration or posture control. In Fig. 6, we
observe some strong responses at the range R̃ of each target.
We can also identify time-variant components in the pedes-
trian response along the measurement slow time, even when
the pedestrian is static. These components are regarded as
mm-order displacements of the human body due to breath-
ing or position control, which have been identified in [34].
In particular, the response in Case 1, i.e., at the radar center
beamwidth, is more distinctive than that in the other cases
because the main radar beam is in the direction at the front
of the radar. Nonetheless, in each case, there are significant
discrepancies between the dummy and the static pedestrian
responses. Cases 1, 2, and 3 were used for the training se-
quences of the SVM or LSTM learning approach to identify
the targets in the NLOS scenario, as described in the next
section.

3.2.2 Scattered Data in NLOS Scenario

Next, we investigated the target identification performance
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(a) Dummy in Case 1 (A-LOS-S) (b) Pedestrian in Case 1 (A-LOS-S) (c) Case 1 (A-LOS-S)

(d) Dummy in Case 2 (B-LOS-S) (e) Pedestrian in Case 2 (B-LOS-S) (f) Case 2 (B-LOS-S)

(g) Dummy in Case 3 (C-LOS-S) (h) Pedestrian in Case 3 (C-LOS-S) (i) Case 3 (C-LOS-S)

Fig. 6: (a), (b), (d), (e), (g), and (h) express range-τ profiles as |s(R, τ)| in Case 1, 2, and 3. (c), (f), and (i) denote the scattered
plots of each response at the specific extracted range as R̃ = 5.1 m, R̃ = 5.9 m, and R̃ = 6.2 m, respectively. Blue and red
dots denote responses from the child-dummy and the actual pedestrian, respectively.

in the NLOS region with and without multiple scattering ef-
fects. The SUV vehicle was located between the radar and
the target position, as shown in Fig. 4. Then, positions B and
C were included in the full NLOS region. Figure 7 shows
the reflection responses s(R, τ) at position C in this NLOS
scenario, where a metallic rectangular shield, which gener-
ates multiple scattered signals between the shield and target,
either does not exist, or it is located at 2 m behind the vehi-
cle, as shown in Fig. 4. The results in Case 4 (C-NLOS-S),
namely, the NLOS case without multiple scattering compo-
nents, corresponding to the situation in [34], show that the
diffraction signal strength is considerably lower than those
obtained in the LOS scenario, as in Case 3 (C-LOS-S). Also,
we can hardly identify any distinctive features in the scat-
tered signal plots of the responses between the dummy and
the pedestrian. In contrast, in Case 5 (C-NLOS-M), i.e., in
the situation assumed in the proposed scheme, the scattered
data exhibit distinctive responses obtained from the pedes-
trian at the far range (R̃M = 9.35 m) and are considered as
multiple scattered signals between the shield and the targets.

Table 2: Parameters used in the LSTM.
Parameter Value

Number of epochs 3
Mini-batch size 25

Initial learning rate 0.01
Sequence length 100

The scattered signal plots extracted for this range exhibit a
significant discrepancy between the dummy and the pedes-
trian, which is similar to Case 3.

3.2.3 Classification Results

Next, we investigated the two-class classification perfor-
mance (dummy v.s. pedestrian) using the SVM and the
LSTM for Cases 4 and 5. To evaluate the applicability of
this scheme, we introduced three different training datasets
in the LOS case, which were extracted from Cases 1, 2, and
3, as shown in Fig. 5. To train the SVM and LSTM, we
introduce five-fold cross validation scheme, where the pro-
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(a) Dummy in Case 4 (C-NLOS-S) (b) Pedestrian in Case 4 (C-NLOS-S) (c) Case 4 (C-NLOS-S)

(d) Dummy in Case 5 (C-NLOS-M) (e) Pedestrian in Case 5 (C-NLOS-M) (f) Case 5 (C-NLOS-M)

Fig. 7: Case 4 corresponds to the situation in [34]. Case 5 corresponds to the situation in the proposed method. (a), (b),
(d), and (e) express range-τ profiles as |s(R, τ)| in Case 4 and 5. (c) and (f) denote the scattered plots of each response at
the specific extracted range as R̃ = 6.60 m and R̃ = 9.15 m, respectively. Blue and red dots denote responses from the
child-dummy and the actual pedestrian, respectively.

Table 3: Recognition accuracy by the SVM scheme in Case
4 (C-NLOS-S) i.e., assuming the scenario in, [34], in using
each training data the situation A-LOS-S (A), B-LOS-S (B),
and C-LOS-S (C). In Feature 5, the notation in Data length
parameter denotes M(N) in Eq. (6).

Feature Data length A B C
1 1 47.0 % 49.9 % 37.7 %
2 2 49.5 % 49.9 % 40.0 %

10 47.1 % 49.7 % 37.1 %
3 20 47.0 % 49.7 % 37.1 %

50 47.4 % 50.0 % 37.5 %
100 49.4% 50.0 % 41.7 %
10 49.3 % 50.0 % 44.2 %

4 20 49.8 % 50.0 % 45.7 %
50 50.0 % 50.0 % 45.8 %
100 50.0 % 50.0 % 48.9 %

10(6) 37.7 % 37.9 % 37.8 %
5 20(16) 36.4 % 37.4 % 36.9 %

50(46) 35.1 % 38.7 % 35.1 %
100(96) 35.1 % 40.9 % 35.0 %

portion of the training and validation data is defined as 80
% (1280 samples) and 20 % (320 samples). We extract the
average accuracy for these five training patterns, where the
unknown test data (200 samples) are input. In the LSTM,
the bi-directional LSTM [38] with two hidden layers are
used, where the adaptive moment estimation (Adam) solver
is used. Table 2 also summarizes the parameters used in the
LSTM. At first, Tables 3 and 4 show the classification accu-
racy in Case 4 (C-NLOS-S), where only the diffraction sig-
nals are available in scattered data as in Fig. 6-(a), (b), and

Table 4: Recognition accuracy by the LSTM scheme in Case
4 (C-NLOS-S) i.e., assuming the scenario in, [34], in using
each training data the situation A-LOS-S (A), B-LOS-S (B),
and C-LOS-S (C). In Feature 5, the notation in Data length
parameter denotes M(N) in Eq. (6).

Feature Data length A B C
1 1 54.7 % 57.0 % 49.5 %
2 2 49.8 % 50.0 % 50.0 %

10 40.3 % 36.7 % 45.6 %
3 20 56.9 % 48.8 % 51.4 %

50 60.2 % 45.8 % 47.4 %
100 31,4 % 45.8 % 35.7 %
10 52.0 % 46.3 % 51.5 %

4 20 43.7 % 50.3 % 59.8 %
50 57.9 % 50.2 % 60.4 %

100 48.6 % 45.8 % 46.7 %
10 (6) 49.8 % 37.8 % 44.4 %

5 20 (16) 40.7 % 44.3 % 41.3 %
50 (46) 38.1 % 41.8 % 40.3 %

100 (96) 34.2 % 44.1 % 44.6 %

(c). Here the accuracy is defined as the average value of the
true positive and true negative rates. These tables indicate
that a high accuracy (over 50%) could not be obtained in
Case 4 in the both learning schemes SVM and LSTM, even
when using various types of training datasets or features,
because the strength of each diffraction signal was not suf-
ficient to identify the features of targets due to the obtained
low SNR values, and the reflection responses from both the
dummy and the pedestrian are dominated by random noise
(Fig. 7 (c)); thus, all test data are identified as either target
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Table 5: Recognition accuracy by the SVM scheme in Case
5 (C-NLOS-M), i.e., assuming the proposed scenario, in us-
ing each training data the situation A-LOS-S (A), B-LOS-S
(B), and C-LOS-S (C). In Feature 5, the notation in Data
length parameter denotes M(N) in Eq. (6).

Feature Data length A B C
1 1 90.8 % 90.9 % 90.8 %
2 2 85.5 % 89.6 % 93.9 %

10 90.1 % 90.9 % 90.3 %
3 20 89.6 % 90.3 % 90.6 %

50 87.5 % 91.9 % 94.1 %
100 87.1 % 91.2 % 96.4 %
10 80.7 % 84.8 % 89.8 %

4 20 81.2 % 83.8 % 87.6 %
50 88.8 % 85.5 % 91.2 %
100 92.0 % 90.3 % 93.3 %

10 (6) 76.7 % 77.6 % 76.7 %
5 20 (16) 79.1 % 79.4 % 78.7 %

50 (46) 82.0 % 77.4 % 82.4 %
100 (96) 87.3 % 74.3 % 88.7 %

Table 6: Recognition accuracy by the LSTM scheme in Case
5 (C-NLOS-M), i.e., assuming the proposed scenario, in us-
ing each training data the situation A-LOS-S (A), B-LOS-S
(B), and C-LOS-S (C). In Feature 5, the notation in Data
length parameter denotes M(N) in Eq. (6).

Feature Data length A B C
1 1 59.2 % 50.7 % 50.3 %
2 2 50.0 % 50.0 % 49.9 %

10 47.7 % 54.1 % 49.9 %
3 20 50.6 % 45.9 % 55.1 %

50 45.1 % 53.0 % 45.7 %
100 42.9 % 54.4 % 53.9 %
10 52.2 % 55.1 % 55.8 %

4 20 42.3 % 59.6 % 43.5 %
50 54.9 % 59.8 % 43.8 %
100 49.6 % 40.2 % 60.6 %

10 (6) 77.7 % 74.3 % 76.3 %
5 20 (16) 81.1 % 76.0 % 77.4 %

50 (46) 85.7 % 79.4 % 82.5 %
100 (96) 81.4 % 72.1 % 83.5 %

(the dummy in this case). Conversely, Table 5 and 6 summa-
rize the accuracy in assuming Case 5 (C-NLOS-M), where
the multiple reflection signals are included in the reflection
data. These results demonstrate that the multiple scattering
components greatly enhance the identification accuracy due
to the obtained high SNR values, compared with those ob-
tained in Case 4, especially in using the SVM with any fea-
ture or data length. Notably, in this case, while the LSTM
could not retain a sufficient accuracy in using Feature 1, 2,
3, and 4, the Feature 5 remarkably enhance the accuracy,
particularly in using longer data length (e.g., 100). Thus,
the accuracy of the LSTM highly depends on the selected
feature vector, unlike the SVM results, Furthermore, in any
case, the accuracy do not much depend on the location of
the training data as A, B, or C, which demonstrates the ap-
plicability of the proposed scheme in terms of robustness to
training dataset.

Table 7: SNRs in each case.
Case Dummy Pedestrian

1 11.4 dB 40.0 dB
2 22.8 dB 30.3 dB
3 11.1 dB 31.8 dB

4 ( [34]) 18.3 dB 9.6 dB
5 (Proposed) 27.6 dB 33.7 dB

The above discussions are also validated in the view
point of the available SNR. Table 7 shows the SNR values
in each case, where the SNR ≡ PS/PN is defined where
signal power PS is determined as.

PS = max
R,τ

|s(R, τ)|2 (13)

Conversely, the noise power PN is defined as the average
of lower 10 % data of |s(R, τ)|2, which approximately esti-
mates an variance of additive white noise. This table shows
that in Case 5 (the proposed scheme), 10 to 20 dB higher
SNR values were obtained by extracting the multiple scat-
tering echo signals, compared to those in Case 4, which
contributes more accurate recognition for pedestrian exist-
ing. This experimental test assumes an ideal metallic shield
with a smooth surface to generate multiple scattered sig-
nals. However, in real-world cases, such shielding obstacles
do not necessarily have smooth surfaces, such as cylindrical
poles and walls with corners. In particular, if the rear obsta-
cle is another parked vehicle, then its front or rear surface
will be more complex, and its surface reflection strength
should be reduced considerably relative to that of the flat
shield. In these cases, the expected SNR will be lower
than that assumed in this experiment, and some noise reduc-
tion scheme should be implemented, such as coherent radar
imaging processing along multiple elements. Nevertheless,
the SNR will be enhanced relative to the case involving only
diffraction signals. Furthermore, although this study adopts
SVM or LSTM based classification, many machine learn-
ing schemes are available, such as random forests, k-nearest
neighbor models, and logistic regression. Among these al-
gorithms, SVMs are prevalent, easily implemented nonlin-
ear classifiers needing less parameter selection and less sen-
sitive to the feature vector, compared with the LSTM based
RNN approaches. According to the above results, with such
a widely used classifier, the use of multiple scattered signals
can significantly help enhance recognition accuracy com-
pared with that obtained using the strategy in [34].

3.3 Further Discussions

This section discusses the advantages and limitations of the
proposed method based on a realistic scenario. First, the
proposed method does not require target position estimation
for classification; instead, it only extracts the temporal vari-
ations of scattered signals at a specific range, determined by
the maximum response along fast time. Depending on the
arrangement of the target and reflector, dominant propaga-
tion paths, such as direct, diffracted, or multipath scatter-
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ing waves, may vary, resulting in a possible change in their
relative intensities. However, as the method selects the sig-
nal with the maximum amplitude response, it need not dis-
tinguish whether the received signal originates from direct,
diffracted, or multipath scattering waves. Moreover, it does
not require any knowledge of the target or reflector location.
In addition, focusing on Case C in the NLOS area, the prop-
agation length (delay) is equivalent to a scenario wherein a
target is located in the LOS area at y = 7 m with the same
x position as Case C. Thus, the recognition accuracy could
potentially be improved via the inclusion of training dataset
corresponding to this target position. However, even when
using only the training dataset from Cases A, B, or C in the
LOS area at y = 5 m, the proposed scheme maintains suffi-
cient recognition accuracy by effectively extracting multiple
scattering signals, particularly through the use of SVM, as
shown in Table 5. This is another advantage of the proposed
method.

Furthermore, assuming that the distance between re-
flectors (e.g., parked vehicles) is approximately 1 to 2 m,
similar to parallel parking scenarios, and that pedestrians are
likely positioned near the midpoint, we set the target and re-
flector positions accordingly, with the reflector located 1 m
behind the target, as illustrated in Fig. 4-(a). Notably, even
when the target-reflector distances along the y-axis were set
to 0.5 m or 1.5 m, multipath scattered signals would be ob-
servable according to shifting the reflection points of the re-
flectors. Although these distance variations introduce slight
differences in propagation length, they do not significantly
impact classification accuracy. This is because classification
accuracy, whether using training datasets A or B (which in-
volve different propagation lengths), is preserved by utiliz-
ing multiple scattering signals, as presented Table 5. Fur-
ther changes in target position along the y-axis could alter
the dominant propagation path among direct, diffracted, and
multipath scattered waves. However, these variations are ex-
pected to be analogous to those observed when shifting the
position along the x-axis.

4. Conclusion

In this study, we introduced a multiple scattering signature-
based pedestrian recognition scheme under NLOS condi-
tions using an MMW collision avoidance radar. The pro-
posed scheme extracts a multiple signal scattering signa-
ture from the slow-time range profile and recognizes a static
pedestrian from an artificial dummy by exploiting a unique
feature of the human body displacements due to breathing or
posture control without using imaging processing. The ex-
perimental tests using a 24-GHz MWW radar and assuming
a real road environment demonstrated that the multiple re-
flections have a great potential to enhance the SNR and tar-
get identification accuracy by employing an SVM or LSTM
based learning process, where the SVM has less sensitivity
to selecting the feature vector, compared with the LSTM.

Notably, this study assumes a static radar scenario with
a moving vehicle-mounted radar. Driving-induced vibration

will affect the phase fluctuation in the target response. In
this case, the phase variations derived from only the breath-
ing or posture control of the pedestrian should be extracted
using the characteristic signature (periodical phase rotation
due to respiration or walking motion). In addition, we can
suppress the clutter from other obstacles, such as parked ve-
hicles, walls, and other traffic surroundings, by considering
the relative velocity to the moving radar site, which can be
estimated using the time-varying responses in s(R, τ), using
the Hough transform or other tracking approaches. Addi-
tionally, while this study assumes extraction from the range-
τ profile; it can be expanded to obtain a complex-valued
radar image via MIMO array-based beam-forming process.
By extracting a phase variation in these radar images, it is
promising to recognize a pedestrian in NLOS areas, while
their images would be located at mirror position to the wall
or parked vehicle. Although we need further investigations
to clarify the above point in the future, the proposed mul-
tipath scheme is a promising solution that expands the ap-
plication range of NLOS target recognition using vehicle-
mounted MMW radars.

Finally, 79 GHz and other high-frequency MMW
radars have appeared in recent years, outperforming 24
GHz ones in terms of spatial resolution or wider band-
width. Since diffraction effects are further abated in higher-
frequency systems, the use of multiple signals will be indis-
pensable in NLOS sensing, and our ongoing work aims to
extend this scheme to 79 GHz MMW radar systems.
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