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Clinical Validations on Effective Skin Clutter
Rejection for Microwave Breast Cancer Diagnosis
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Abstract—This paper presents a cancer recognition scheme
based on backscattered raw data using effective surface clutter
rejection in microwave breast cancer diagnosis. Microwave breast
cancer diagnostics enables a non-ionizing, non-compressive, low-
cost examination, which can enhance the examination rate and
frequency. A traditional radar image based cancer diagnosis faces
a critical difficulty in discriminating cancer in highly dense breasts
due to low contrast from fibro-glandular tissues. Therefore, this
study introduces a direct recognition scheme from a complex-
valued scattered signal, without using any imaging process, in
which an efficient skin surface reflection (SSR) approach is intro-
duced. Clinical data from over 100 Japanese subjects show that our
SSR approach can enhance the recognition rate of cancerous tissues
via a support vector machine (SVM) based learning approach.

Index Terms—Microwave breast cancer dignosis, radar imaging,
machine learning, skin surface rejection (SSR), clinical data
validation.

I. INTRODUCTION

ACCORDING to global statistics from the World Cancer
Research Foundation, breast cancer is the most commonly

diagnosed and fatal cancer worldwide [1]. X-ray imaging re-
mains the most widely used screening tool; however, it in-
volves significant X-ray exposure that can harm healthy tis-
sue, and necessitates a painful breast compression during the
procedure. These factors result in a lower examination rate,
particularly among young women. While magnetic resonance
imaging (MRI) offers safe, high-resolution imaging, it requires
large, expensive equipment for electric and magnetic shielding.
Ultrasound-based diagnosis, though safe and non-invasive, has
limitations, as its recognition accuracy largely depends on the
skill and experience of the operator. Additionally, in dense
breasts, it often results in a high false-positive rate due to the
difficulty in distinguishing between fibro-glandular and cancer-
ous tissues. On the contrary, low-energy microwave screening
provides significant advantages in terms of safety, affordability,
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compactness, and non-contact measurement [2], [3], which is a
crucial factor in improving screening rates. These features also
enable more frequent examinations, which can lead to earlier
detection of breast cancer and, consequently, better outcomes.

Several studies and ex-vivo investigations have demonstrated
a distinct dielectric contrast between normal adipose tissue
and tumor tissues [4], which has fueled the development of
microwave-based cancer detection methods. Over the past few
decades, numerous clinical studies have explored the use of
microwave imaging for breast cancer detection [5], [6], [7],
[8], [9], demonstrating variations in dielectric properties due
to breast variability [10] and evaluating the sensitivity and
specificity across numerous subjects [11], [12]. There are two
primary approaches for image analysis of microwave scattered
data to identify cancerous tissue. One approach is coherent
integration(CI)-based imaging, commonly referred to as con-
focal imaging, beamforming, or modified delay-and-sum meth-
ods [13], [14], [15], [16]. However, CI based imaging suffers
from a high false-positive rate because it offers only a qualitative
spatial profile of the reflection coefficient. In dense breasts,
fibroglandular tissue surrounded by adipose area (with lower
permittivity) can produce a strong response that hinders cancer
detection. The other approach, inverse scattering (IS) analysis,
also known as the tomography approach, offers a quantitative
dielectric profile by solving the domain integral equation. Since
the IS problem is nonlinear and generally ill-conditioned, vari-
ous techniques such as the Born approximations, the distorted
Born iterative method (DBIM) [17], [18], [19], [20], [21] and
contrast source based inversion (CSI) [22], [23], [24] have been
developed. While these methods provide a more accurate recon-
struction of cancerous tissue, even in highly dense breasts, they
are computationally intensive, particularly in three-dimensional
imaging scenarios.

Building on the aforementioned background, we focused on
the backscattered echo-based recognition method using a ma-
chine learning strategy, enhanced by an advanced skin surface
reflection (SSR) scheme. While numerous studies have utilized
the microwave band for breast cancer detection, they often rely
on specific imaging techniques, such as radar or tomography,
to generate input data for machine learning. Consequently, the
recognition performance in these studies is highly dependent on
the spatial resolution or reconstruction accuracy of the selected
imaging method or condition, although several such studies
have been published [25], [26], [27], [28], [29], [30], [31]. To
address the above-mentioned issue, this study omits the interme-
diate imaging step, and instead directly inputs matched-filtered
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backscattered data into the machine learning process. While
some studies [32] introduced supervised machine learning ap-
proaches for breast cancer detection or characterization, most of
them assumed unrealistic breast models, such as non-dispersive
or homogeneous media. Furthermore, as another novel aspect of
our study, we introduce a cutting-edge SSR technique based on
the fractional derivative (FD) model [33], aimed at improving
the backscattered signal-based learning scheme. While there are
numerous SSR approaches in the literature, such as FIR [16],
singular value decomposition (SVD) [34], entropy-based time
windowing [35], and two-stage processing [36], this FD-based
SSR method optimizes the FD parameter to account for the
frequency dependence of the skin surface reflection waveform.
This optimization significantly reduces skin clutter signals, par-
ticularly when mutual coupling effects between the antenna
and skin occur. Additionally, we incorporate simple averaging
(SA) or singular value decomposition (SVD)-based data com-
pression for a rotating measurement model, which provides a
low-dimensional input vector and enhances noise suppression.

Furthermore, this study includes a large-scale clinical trial in-
volving more than 100 cases, both cancerous and non-cancerous
cases, conducted at Hiroshima University Hospital in 2019,
utilizing multiple-input multiple-output (MIMO) ultrawide band
radar equipment [15]. We begin by introducing and validating
the effectiveness of the SSR method using the FD model, and

investigate the performance of support vector machine
(SVM)-based cancer recognition using the clinical datasets.

The main contributions of this study are summarized as:
1) Backscattered data based cancer recognition scheme by

SVM based supervised machine learning is introduced,
where no imaging processing is required. To reduce the
dimension of the input vectors for the post-SVM process,
the rotation augmented data are compressed by SVD pro-
cess.

2) For strong skin surface clutter suppression, the advanced
SSR scheme is introduced, where the frequency depen-
dency of reflection waveform due to mutual coupling or
near-field effect, has been accurately compensated by the
FD model.

3) Clinical data over 100 subjects have been investigated
in evaluating the proposed recognition scheme, where 3
- 9GHz band UWB MIMO radar module has been em-
ployed. Over those evaluations, our original SSR scheme
offers more accurate recognition rate, compared to the case
without the SSR process.

II. SKIN SURFACE REJECTION(SSR)

A. Observation Model

Fig. 1 shows the observation model, including the breast
media. Multiple transmitter and receiver elements located at rT
and rR, respectively, which rotates along the center of the breast.
s(t, θ; rT, rR) denotes the reflection signals at the combination
of rT and rR with rotation angle θ.

It is also assumed that the breast medium consists primarily
of skin, adipose tissue, and fibroglandular tissue with dispersive
and isotropic dielectric profiles.

Fig. 1. Observation model. Multiple transmitter/receiver elements configure
circular array, which is rotated along the vertical axis.

B. Skin Surface Rejection (SSR) Method

In the context of cancer detection, it is essential to effectively
eliminate skin surface reflections during pre-processing, as the
signal strength of these reflections is significantly greater than
that of the cancerous response. Otherwise, the stronger reflec-
tions can obscure the cancerous responses in the radar image.
Various SSR methods have been developed to tackle this issue,
with one commonly used approach being reference signal-based
matching.

Notably, if the distance between the skin and antenna remains
constant during array rotation, the subsequent averaging opera-
tion generates the reference signal s̄ref(t; rT, rR)with enhanced
signal-to-noise ratio as follows:

s̄ref(t; rT, rR) =
1

Nθ

Nθ∑
i=1

s(t, θi; rT, rR) (1)

where θi denotes the i-th rotation angle and Nθ is the total num-
ber of sampled rotation angles. Then, time-shift and amplitude
adjustment has been determined as follow:

(Â, τ̂) = =argmin
(A,τ)

∫ Tr+TW

Tr

|s(t, θ; rT, rR)

−As̄ref(t− τ ; rT, rR)|2 dt, (2)

Here, Tr represents the rise time of s(t, θ; rT, rR), which can
be determined by the peak of the cross-correlation functions
between s̄ref(t; rT, rR) and s(t, θ; rT, rR). TW denotes the
temporal window length, that is determined by the effective pulse
width of the transmitted signal. If TW is either too short or too
long relative to the effective pulse width, it can lead to under-
or over-suppression, where the signals from fibroglandular or
cancerous tissues may also be inadvertently suppressed. Using
the optimized parameters for time-shiftτ̂ and amplitude Â, the
reflection responses from the skin are subtracted as:

s̃AVE(t, θ; rT, rR)=s(t, θ; rT, rR)−Âs̄ref(t−τ̂ ; rT, rR) (3)

We call the above SSR scheme as SSR-AVE, for simplicity.
While this approach relies on a simple process, it overlooks the
frequency dependency of reflection response, which it typically
caused by a mutual coupling or variations in the skin surface.

To address the above issue, the former study [33] introduced
the FD model as the most effective suppression scheme. The
advantage of introducing this method lies in its ability to account
for the frequency dependency of the reflection signal, which is
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influenced by mutual coupling effects or near-field effect. The
FD-based reflection signal model is formulated as:

s̃ref(t, α; rT, rR) = F−1
[
(jω)αS̄ref(ω; rT, rR)

]
(4)

where S̄ref(ω; rT, rR) is the frequency domain reference signal
of s̄ref(t, rT, rR). The FD operator is denoted by the term (jω)α,
where α is so-called FD parameter.

In the SSR-FD scheme, the three parameters (A, τ, α) are
optimized for each reflection response as follows:

(Â, τ̂ , α̂) = argmin
(A,τ,α)

∫ Tr+TW

Tr

|s(t, θ; rT, rR)

−As̃ref(t− τ, α; rT, rR)|2 dt, (5)

Then, the subtraction signal with SSR-FD is expressed as:

s̃FD(t, θ; rT, rR) = s(t, θ; rT, rR)

− Âs̃ref(t− τ̂ , α̂; rT, rR) (6)

The template matching process described above primarily op-
timizes (τ, A, α) to minimize residuals between the observed
and mathematically modeled signals. Notably, (2) and (5) need
a non-linear optimization algorithm, in this case, we employ the
simplex method [39], initializing the parameters as (τ, A, α) =
(Tr, 1, 0). Notably, the FD adjustments in (4) can compensate
the frequency dependency of the skin reflection waveform,
which cannot be achieved by simply time-shifting or amplitude
adjustment.

C. SVM Based Recognition

As one of the most promising and prevailed machine learning
scheme, this study introduces the SVM based recognition. The
SVM is one of the non-linear classification scheme, where
the multi-dimensional input data are classified in the hyper-
space using non-linear conversion. To reduce a computational
complexity in non-linear conversion, the SVM introduces the
following kernel function to measure the distance between the
input vectors in hyper-space:

K(xi,xj) = φ(xi)
ᵀφ(xj) (7)

where φ(∗) denotes the non-linear conversion operator. Here,
we use the Gaussian kernel function as:

K(xi,xj) = exp

(
−‖ xi − xj ‖2

2σ2

)
(8)

where σ denotes the standard deviation in Gaussian function.

D. Dimension Reduction of Input Vectors

To avoid an over-fitting issue in the machine learning process
using a limited number of training data, the dimension reduction
of the input vector is essential. Here, we introduce the following
two dimension reduction schemes: Let the matrix Y ∈ CM×N

the complex scattered data of S(ω, θ; rT, rR), where the SSR
processing is completed in (3) or (6)). N and M denote the
number of frequency and rotation angle samples, respectively.

At first, the simple averaging (SA) based dimension reduction,
defines the input vector XSA ∈ C1×N as:

XSA
i =

1

M

∑
j

Yi,j , (i = 1, . . ., N) (9)

The other scheme is the SVD based reduction as:

Y = UΣV (10)

whereU andV denote the left and right singular vectors, respec-
tively. Then, the compressed input vector is defined as XSVD =
ΣmaxV , where Σmax corresponds to the matrix with the largest
singular value. Note that, it is expected that the SVD provides
more noise-robust feature, by extracting the singular vector
with the maximum singular values, where noise-components
are effectively eliminated. Additionally, by compressing the
data along the rotation angle, the SVD-based scheme efficiently
extracts cancer response information even when the tumor
position is deviated from the center of the breast, as cancer
response strength depends on the rotation angle. Subsequently,
by effectively capturing the cancer response though SVD, this
approach minimizes accuracy variations caused by differences
in tumor positioning. Fig. 2 presents the schematic illustration
of the proposed method. Notably, principal component anal-
ysis (PCA) based dimensionality reduction has been applied
in several studies [40], as an alternative compression scheme.
In these applications, PCA performs eigenvalue decomposition
on the covariance matrix of the signals. Meanwhile, SVD di-
rectly decomposes the original signal. However, several studies
indicate that the differences between SVD- and PCA-based
compression are not significant [41]. Therefore, we focus solely
on SVD-based compression in the following analysis.

E. Processing Flow of Proposed Method

The actual procedure of the proposed method is described as
follows.

Step 1): Reflection responses s(t, θi; rT, rR) are processed
by each SSR scheme in (3) or (6).

Step 2): The dimension reduction is applied to the SSR
processed responses s̃(t, θi; rT, rR) using SA or
SVD schemes in (9)) or (10), and the input vector
X ∈ C1×N is calculated for training data.

Step 3): The SVM based supervised learning is carried out
using a training dataset.

Step 4): For each test data, Step 1) and 2) are applied, and
the trained SVM classifies the input data as with or
without cancer.

III. CLINICAL TESTS AND DISCUSSIONS

A. Measurement and Clinical Setup

The performance evaluation was conducted using clinical test
data obtained from Hiroshima University Hospital. This clinical
trial was conducted with written informed consent from the par-
ticipants, which was approved by the Institutional Review Board
of Hiroshima University Hospital. All procedures followed the
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Fig. 2. Schematic illustration of the proposed classification scheme. Multiple transmitter/receiver elements configure circular array, which is rotated along the
vertical axis.

Fig. 3. Measurement scene in clinical investigations in [15].

TABLE I
NUMBER OF SUBJECTS AND BREAST DATA WITH OR WITHOUT TUMORS

SELECTED BY THE SSR PERFORMANCE SELECTION (FSup ≤ 0.1)

guidelines outlined in the Japan Clinical Oncology Group Proto-
col Manual, version 2.6, which approves the breast cancer detec-
tion method and its measurement procedures, and is registered
with the University Hospital Medical Information Network-
Clinical Trials Registry under number UMIN000026181 [37].

The UWB handheld radar module, developed in [15], was
used for the tests, which features a cross-shaped array of an-
tennas, consisting of eight transmitters and eight receivers. This
module repeatedly transmits a Gaussian-modulated mono-cycle
pulse with a center frequency of 6.0GHz and a bandwidth of
6.7 GHz, i.e., the operating frequency band is from 2.65 GHz to
9.35 GHz.

The array is positioned on a hemispheric dome with a radius of
76 mm, which is rotated from 0 to 360 degrees in 45 ◦ increments.
Each antenna is a planar slot UWB antenna with the dimension
of 11 mm × 13.1 mm × 0.635 mm, and the gain, directivity, and
frequency characteristics of these antennas have been described
in [38]. To ensure proper contact with the breast surface, this
radar array is designed with a deep hole to accommodate the
nipple, minimizing impedance mismatch between the air and
breast, thus, a coupling medium is not used in this case. Fig. 3
shows the examination scene, using this hand-held radar module.
Table I also provides details on the number of subjects with and
without tumorous tissue, with both sides of the breast examined.
For subjects with tumors, two distinct data sets were collected
one from the breast with the tumor and one from the breast
without it. This yielded a total of 131 clinical data sets with

Fig. 4. Reflection responses. Red broken line is the measured signal. Black
broken and blue solid lines are the reconstruction response of surface reflection
using a reference and FD-based method, respectively.

tumors and 89 without, with diagnoses confirmed by a medical
expert examining MRI or PET images

B. Results of SSR

First, we investigate the efficacy of SSR approaches. Fig. 4
shows one example of a reflection response without and with
SSR for the breast with tumor using each method. This figure
demonstrated that the FD-based SSR method could compensate
for the frequency dependency of the reflection response, partic-
ularly at the early time of peak responses between 3.3 and 3.6ns,
which should not be a response from the tumor or other internal
tissue.

In this clinical validation, we extract the samples, where
the skin surface reflection is sufficiently eliminated. In order
to quantitatively evaluate the SSR performance, the following
metrics Fsup is introduced as:

Fsup =
maxTr≤t≤Tr+W

swSSR(t)

maxTr≤t≤Tr+W
swoSSR(t)

(11)

where swoSSR(t) and swSSR(t) denote the signals without and
with the SSR process, respectively, and 0 ≤ Fsup ≤ 1 holds.
Fig. 5 shows the cumulative distribution function (CDF) of
Fsupin each SSR method. This result demonstrates that the SSR
FD method considerably reduces the Fsup value, compared with
that obtained by the SSR AVE method, referring the constant
CDF. In particular, the number satisfying Fsup ≤ 0.1 by the
SSR FD (64) is 1.7 times larger than that by SSR AVE (37).
Consequently, we extract the samples that satisfy Fsup ≤ 0.1 in
the SSR-FD process, namely, 64 samples, for further recognition
stage, where 37 samples with cancer and 27 samples without
cancer as shown in Table I. Notably, the strength of skin reflec-
tion signals is significantly higher than that of internal tissue
signals. Some studies have reported that the signal strength ratio
of cancer to skin reflections is 1:10 [33], [36]. Thus, we selected
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Fig. 5. Cumulative distribution function (CDF) for maximum value of Fsup.
Blue and red curves denote the Fsup calculated by SSR-AVE and SSR-FD
process.

Fig. 6. Box plots of accuracy with or without using the SSR process for SA
or SVD based dimension reduction schemes. Red line shows the median values.
Box denotes the IQR.

datasets satisfying Fsup ≤ 0.1 to ensure effective suppression
of skin reflections.

C. SVM Classification

1) Parameter Setting: Next, the tumor recognition results by
the SVM based classification. Here, we investigate the recogni-
tion accuracy by the SVM, in using each SSR scheme. At first,
in order to generate the data matrix as Y , we extract 12 samples
from 2.1GHz to 4.4GHz with 0.2GHz spacing. This frequency
range is lower than the central frequency, which helps maintain
a higher SNR by mitigating penetration loss. Specifically, using
a lower frequency enhances the response from deeply embedded
cancerous tissue compared to higher-frequency components. We
evaluate 64 samples, and the 10 folds cross-validation scheme
is introduced in the SVM based training.

Here, the accuracy is defined as TP+TN
TP+FP+TN+FN , where TP,

FP, TN, and FN are the number of true positive, false positive,
true negative, and false negative, respectively. Note that, the
SVM learning process includes some randomly changed param-
eters in the optimization process, then, we take a median value
for the accuracy in each sample with 10 times trials.

2) Classification Result: Fig. 6 shows the box plots for cases
with or without using the SSR processing, where the SA or
SVD based dimension reduction schemes in (9) or (10) are
introduced. Here, each sample in the accuracy is determined
by 64 classification results, which are averaged over 10 times
trials in the SVM training. As shown in Fig. 6, while there are not
significant difference among the SSR process in using the SA
process, there are clear advantages for the SSR process in using

TABLE II
MEDIAN AND IQR VALUES FOR CLASSIFICATION ACCURACY USING EACH

CASE

Fig. 7. Box plots of accuracy with or without using the SSR process for CNN
based classification with temporal or frequency sinogram data. Red line shows
the median values. Box denotes the IQR.

the SVD dimension reduction. Table II also summarizes the me-
dian values interquartile range (IQR) of classification accuracy
for each condition, and demonstrates that the combination use of
w/ SSR (FD) and SVD based input data compression provides
the highest accuracy with small IQR among other combinations.
In particular, the SVD based compression mainly contributes
to an accuracy improvement, where the dominant components,
being invariant to the rotation, can be well retrieved by using the
SVD.

Notably, the accuracies in all approaches still remain less than
70 %, even in using the SSR-FD and SVD processes. This is
caused by non-negligible responses from fibro-glandular tissues,
which has the same level of dielectric parameters of the cancer
tissue.

To validate the relevance of the proposed scheme, other deep-
learning classification methods based on the CNN framework
are investigated. Specifically, temporal and frequency sinograms
without data compression along the rotation axis were used,
as in [42] and [43], respectively. In the CNN scheme, the
rotation variances of signals are effectively mitigated through
convolution and pooling layers, and this action corresponds to
the dimensionality reduction assumed in the proposed method
(SA or SVM).

Fig. 7 presents a boxplot of the recognition accuracy achieved
by CNN-based classification using both temporal and frequency
sinogram data from the same dataset (64 samples). Meanwhile,
Table II displays the median accuracy and IQR for each SSR
scheme. While the CNN scheme without SSR or with SSR-AVE
maintains relatively higher median accuracy values, its IQR is
significantly larger than that of SVM-based results. This implies
that SVM-based classification offers more stable recognition
than the CNN approach.
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Fig. 8. Box plots of accuracy with or without using the SSR process for SA
or SVD based dimension reduction schemes, where the data samples satisfying
Fsup ≤ 0.2 are used (200 samples). Red line shows the median values. Box
denotes the IQR.

TABLE III
MEDIAN AND IQR VALUES FOR CLASSIFICATION ACCURACY DATA SAMPLES

SATISFYING FSup ≤ 0.2

We also investigate cases with different Fsup thresholds.
As outlined in Section III-B, we selected a dataset satisfying
Fsup ≤ 0.1, comprising 64 samples. However, this dataset may
provide insufficient samples for training, posing a potential risk
of over-fitting. To address this, we increase the dataset size by
relaxing the threshold to Fsup ≤ 0.2, extracting 200 samples
(117 samples with cancer and 83 samples without cancer). Fig. 8
presents a boxplot of the classification accuracy achieved by the
SVD scheme, while Table III summarizes the median and IQR
values for each case. Comparing the results presented in Fig. 6
and Table II, we observe significant differences are observed
between datasets with Fsup ≤ 0.1 and Fsup ≤ 0.2, particularly
in relation to the proposed combination of SSR-FD and SVD
processes (as seen in Figs. 6-(b) and 8-(b) and Tables II and
III)). For datasets where Fsup ≤ 0.1, the SSR-FD and SVD
processes achieve the highest accuracy, with a median value
of 66.7 % (Q1: 65.0 %, Q3: 71.7 %). By contrast, for the dataset
with Fsup ≤ 0.2, the accuracy remains below 60 %, with a
median value of 58.5 % (Q1 = Q3: 58.5 %). This finding clearly
shows that the SSR performance significantly affects recognition
accuracy. In addition, although increasing the number of training
samples (200 samples under Fsup ≤ 0.2) typically enhances
recognition accuracy in general machine learning tasks, this
improvement is not observed when compared to the case of
Fsup ≤ 0.1. This suggests that expanding the dataset to include
higher Fsup cases does not necessarily lead to better recognition
accuracy. Because theFsup value can be calculated without prior
knowledge of skin position or reflection intensity, it serves as an
indicator of the confidence level in the recognition results.

Notably, while transfer learning and regularization techniques
can mitigate overfitting, they present challenges such as select-
ing an appropriate pre-trained network and determining regular-
ization criteria (e.g., sparseness or statistical constraints) based
on prior knowledge. Therefore, increasing the number of inde-
pendent datasets is essentially required for further improving
classification accuracy.

D. Discussions and Limitations

As evidenced by the above evaluations, the final recogni-
tion accuracy (approximately below 70 %) achieved using the
proposed scheme remains inadequate for practical application.
This is primarily attributed to the difficulty in distinguishing
cancer responses from fibro-glandular tissue responses in the
selected clinical datasets. Even with advanced deep-learning
techniques such as CNNs (Fig. 7), accurately detecting cancer
remains a significant challenge, highlighting the complexity of
this classification task.

Additionally, refining the labeling process, such as by catego-
rizing data based on tumor size and malignancy or incorporating
prior information like mammary gland density, may further
enhance the reliability of results and improve the generalizability
of the proposed method. Moreover, the classification scheme
used in this study relies on a binary decision (presence or absence
of cancer). However, for practical applications, implementing a
machine learning approach capable of providing a probabilistic
quantitative index is essential. Such an approach would enhance
method interpretability for medical professionals, enabling more
nuanced decision-making, and improve reliability in real-world
scenarios.

The primary contribution of this study lies in demonstrating
that introducing a highly accurate SSR-FD scheme significantly
enhances identification accuracy compared to cases without SSR
or with SSR-AVE in SVM-based classification. These schemes
are essential for extracting internal tissue responses while sup-
pressing clutter (skin) reflections. These findings represent a no-
table practical advantage and make a meaningful contribution to
the field, particularly in advancing signal processing techniques
for microwave breast cancer diagnosis.

IV. CONCLUSION

This paper presented the back-scattered data based cancer
recognition scheme, using an efficient skin clutter rejection
scheme, known as SSR-FD, for microwave breast cancer diagno-
sis. As a promising SSR scheme, the FD based SSR approach has
been introduced to suppress a skin reflection wave, even when
distorted by frequency characteristic due to mutual coupling or
near-field effect. In addition, the SVD based dimension reduc-
tion scheme has been developed to retain essential information
in the rotating array observation model for the post-SVM based
machine learning classification. The clinical data demonstrated
that the SSR-FD has a significant superiority to the average
based traditional SSR scheme, and the SVD dimension reduction
scheme also contributes to the accuracy improvement, particu-
larly when using the lower-frequency data.
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Nonetheless, the available recognition accuracy (less than 70
%) is not sufficient to be applied in a practical scenario, and it
should be incorporated with other schemes, such as permittivity
estimation of breast via the tomography approach such as in [44].
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