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ABSTRACT

Target shape estimation with UWB pulse radars
is promising as an imaging technique for household
robots. We have already proposed a fast imaging
algorithm, SEABED based on a reversible transform
BST (Boundary Scattering Transform) between the
received signals and the target shape. However the
target image obtained by SEABED deteriorates in
a noisy environment because it utilizes a derivative
of received data. In this paper, we propose a robust
imaging method with an envelope of circles. In a
numerical simulation, we clarify that the proposed
method can realize a robust and fast imaging, which
cannot be achieved by SEABED.

1. INTRODUCTION

UWB pulse radar systems are promising as a
high-resolution imaging, which is suitable and effi-
cient for measuring techniques of household and res-
cue robots. Additionally, they can estimate object
shapes even in a dark smoke where where optical
methods cannot be applied. While many imaging al-
gorithms for radar systems have been proposed, they
require an intensive computation, which is not suit-
able for a realtime operation [1-4]. On the contrary,
we have already proposed a fast imaging algorithm
called SEABED (Shape Estimation Algorithm based
on BST and Extraction of Directly scattered waves)
based on a reversible transform BST between the re-
ceived signals and the target shape [5], [6]. However,
the image obtained by SEABED deteriorates in a
noisy environment because it utilizes derivatives of
the received data. For this problem, image stabiliza-
tion methods have been proposed. One of them uti-
lizes an adaptive smoothing with Gaussian filter[7],
the other is based on Fractional Boundary Scattering
Transform[8]. These methods are robust in a noisy
environment. However, both of them utilize deriva-
tive operations, and cannot completely remove the
instability.

To solve this problem, we propose a robust imaging
algorithm with an envelope of circles in this paper,
which does not sacrifice the fastness of SEABED. We
should notice that the conventional method quoted
at [9] is similar to our approach from the viewpoint
that it extracts the target boundary with time de-
lays. Additionally, this method achieves a robust
imaging in a noisy environment because it does not
utilize a derivative operation. However, this method

can be applied only to the convex targets. In this pa-
per, we propose a fast and robust imaging algorithm
for an arbitrary shape target. We calculate circles
with estimated delays for each antenna location. We
utilize the principle that these circles circumscribe
or inscribe the target boundary. With this principle,
we prove that the target boundary is expressed as a
boundary of an union and an intersection set of these
circles. This method does not utilize a derivative of
a received data, and enables us to realize a robust
imaging for an arbitrary shaped target.

2. SYSTEM MODEL

We deal with 2-dimensional problems and TE
mode waves. We assume that the target has an uni-
form permittivity, and surrounded by a clear bound-
ary which is composed of smooth curves concate-
nated at discrete edges. We also assume that the
propagation speed of the radiowave is constant and
known. We assume a mono-static radar system. The
induced current at the transmitting antenna is a
mono-cycle pulse.

We define r-space as the real space, where targets
and the antenna are located. We express r-space
with the parameters (x, y). An omni-directional an-
tenna is scanned along x axis. Both x and y are
normalized by λ, which is the center wavelength of
the transmitted pulse. We assume y > 0 for sim-
plicity. We define s′(X, Y ) as the received electric
field at the antenna location (x, y) = (X, 0), where
we define Y with the arrival time of the echo t and
speed of the radio wave c as Y = ct/(2λ). We apply
the matched filter with the transmitted waveform to
s′(X, Y ). We define s(X, Y ) as the output of the
filter. We define d-space as the space expressed by
(X,Y ), and call it as a quasi wavefront.

3. CONVENTIONAL METHOD

3 .1 SEABED algorithm

We have already developed a non-parametric
shape estimation algorithm called SEABED. This
method utilizes a reversible transform BST between
the point of r-space (x, y) and the point of d-space
(X,Y ), which is extracted by the output of the
matched filter s(X, Y ). BST is expressed as

X = x + ydy/dx.

Y = y
√

1 + (dy/dx)2.

}
(1)
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Fig. 1. Relationship between r-space (Upper side) and d-space
(Lower side).

IBST (Inverse BST) is expressed as

x = X − Y dY/dX.

y = Y
√

1 − (dY/dX)2,

}
(2)

where |dY /dX| ≤ 1 holds. This transform is re-
versible, and gives us a complete solution for the in-
verse problem. Fig. 1 shows the relationship between
the r-space and the d-space. IBST utilizes the char-
acteristic that an incident wave reflects intensively in
the normal direction. By utilizing IBST, SEABED
enables us to estimate the target boundary directly
from a quasi wavefront. SEABED has an advantage
that it can directly estimate target boundaries with
IBST, and achieves a fast and high resolution imag-
ing.

3. 2. Noise tolerance of SEABED

The estimated image with SEABED easily dete-
riorates in a noisy environment because IBST uti-
lizes the derivative of a quasi wavefront. In this sec-
tion, we show that SEABED is unstable for a noisy
environment. The signals are received at 101 loca-
tions in −2.5λ ≤ x ≤ 2.5λ. We discuss the esti-
mation accuracy for the quasi wavefront with ran-
dom error whose standard deviation is 0.005λ. This
simulation estimates the accuracy without the influ-
ence of other factors including waveform distortion.
We smooth the quasi wavefront with Gaussian filter.
Figs. 2, 4 and 3 show the estimated boundary by
applying IBST to the quasi wavefront where we set
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Fig. 2. Quasi wavefront with noise (Upper side), and an esti-
mated image with SEABED (Lower side) (Corelation length
=0.05λ).
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Fig. 3. Same as Fig. 2 but corelation length is set to 0.2λ.
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Fig. 4. Same as Fig. 2 but corelation length is set to 0.1λ.

a correlation length of the filter as 0.05λ, 0.2λ and
0.1λ, respectively. In Fig. 2, the estimated points
have large errors around the edge. This is because
the correlation length is too short. To discuss the
deterioration of the image analytically, we rewrite
IBST as

x = X + Y cos θ
y = Y sin θ

}
, (3)

θ = cos−1(−dY/dX), (0 ≤ θ < π),

where θ is expressed as in Fig. 1. Eq. (3) means
that the estimated points with IBST are on the cir-
cle whose center is (X, 0) and radius is Y . In the
equation, θ is determined with dY/dX. Therefore,
the estimated point mistakingly plots along this cir-
cle in a noisy environment because the accuracy of θ
strongly depends on that of dY/dX.
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Fig. 5. Quasi wavefront (Upper side) and a convex target
boundary and an envelope of circles (Lower side).

While the estimated image in Fig. 3 is stable, the
resolution of the image degrades especially around
the edge. Accordingly, SEABED suffers from a
trade-off between a stability and resolution of the
estimated image. Therefore, we empirically choose
the correlation length as 0.1λ which holds a resolu-
tion and a stability of the image as shown in Fig.4.
However the estimated points in Fig. 4 still have er-
rors.

To solve this trade-off of SEABED, the meth-
ods for stabilizing images have been proposed. One
method is based on smoothing of the quasi wavefront,
where we change the correlation length of the Gaus-
sian filter depending on the target shape[7]. The
other is based on smoothing of the data obtained in
the intermediate space between the r-space and the
d-space with Fractional Boundary Scattering Trans-
form[8]. These methods achieve a robust imaging
in a noisy environment. However, they cannot com-
pletely solve the above trade-off because they depend
on the derivative operations.

4. PROPOSED METHOD

4. 2. A target boundary and envelopes of circles

To solve the trade-off between stability and reso-
lution of SEABED stated in the previous section, we
propose a new imaging algorithm. First, we clarify
the relationship between the group of points on a tar-
get boundary and that on the envelope of the circles.
We assume that the target boundary ∂T is expressed
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Fig. 6. Quasi wavefront (Upper side) and a concave target
boundary and an envelope of circles (Lower side).

as a single-valued and differentiable function. (X, Y )
is a point on ∂D, which is the quasi wavefront of ∂T .
We define Γ as the domain of X for ∂D. We define
g(X,Y ) = ∂x/∂X = 1 − (dY/dX)2 − Y d2Y/dX2,
and γ as the domain of g(X,Y ). We define S(X,Y ) as
an open set which is an interior of the circle, which
satisfies (x − X)2 + y2 = Y 2. Figs. 5 and 6 show
the relationship between d-space and r-space for a
convex and a concave target, respectively. If ∂D is
a single-valued and continuous function, we define
S+ =

⋃
X∈Γ S(X,Y ) and S× =

⋂
X∈Γ S(X,Y ). We de-

fine the boundary ∂S+ as

∂S+ = {(x, y) | (x, y) ∈ S+−S+, x ∈ γ, y > 0}, (4)

and ∂S× as

∂S× = {(x, y) | (x, y) ∈ S×−S×, x ∈ γ, y > 0}, (5)

where S+ and S× is a closure of S+ and S×, respec-
tively.

Here the next equation holds

∂T =
{

∂S+ (g(X,Y ) > 0),
∂S× (g(X,Y ) < 0). (6)

Eq. (6) shows that ∂S+ and ∂S× express the target
boundary as an envelope of circles depending on the
sign of g(X,Y ) as shown in Figs. 5 and 6. We should
correctly select these methods considering the sign of
g(X,Y ). We utilize the next proposition.



Proposition 1: The necessary and sufficient condi-
tion of g(X, Y ) < 0 is that

S+ ⊂ Smax ∪ Smin (7)

holds. Here, we define (Xmax, Ymax) and
(Xmin, Ymin) as the point of ∂D, where Xmax and
Xmin is the maximum and minimum value at X ∈ Γ,
respectively as shown in Fig. 6. We define Smax and
Smin express S(Xmax,Ymax) and S(Xmin,Ymin), respec-
tively.

We should search the minimum number of the cir-
cles which constitute S+. If the minimum number of
circles is 2, ∂T = ∂S× holds. Otherwise, ∂T = ∂S+

holds. When a target boundary includes an edge,
the edge can be estimated as the intersection point
of circles ∂S(X,Y ), where (X, Y ) is transformed into
the edge point (x, y) with the IBST. Therefore, the
target boundary ∂T with edges can be expressed as
one of ∂S+ and ∂S×.

In our proposed method, we estimate the target
boundary with an envelope of circles by utilizing
these relationships. This method enables us to trans-
form the group of points (X, Y ) to the group of points
(x, y) without derivative operation. Note that we re-
ceive the scattered wave which passes through a caus-
tic point, if quasi wavefronts satisfies g(X, Y ) < 0. In
that case, a phase of the scattered waveform rotates
by π/2 [6]. We can recognize this phase rotation from
(X, Y ) robustly with the sufficient condition of the
proposition 1. We compensate this phase rotation in
our proposed method to enhance the accuracy of the
estimated image.

4. 2. Procedures of the proposed method

We explain the actual procedures of the proposed
method as follows. Here we define R(X, X

′
) as x

coordinates of the intersection point of ∂S(X,Y ) and
∂S(X′ ,Y ′ ). We also define ∆X as the sampling inter-
val of the antenna.

Step 1). Apply the matched filter to the received
signals s

′
(X, Y ) and obtain the output s(X,Y ).

Step 2). Extract quasi wavefronts as (X, Y
′
)

which satisfies ∂s(X, Y )/∂Y = 0, |s(X,Y )| ≥
α ·maxY |s(X,Y )|. Extract (X,Y ) as ∂DT from
(X, Y

′
) which satisfies the local maximum of Y

′

for each X. Parameter α and the searching re-
gion of Y

′
is determined empirically.

Step 3). Extract a set of (X, Y ) as ∂Di from ∂DT

which is continuous and |dY/dX| ≤ 1 satisfies.
Step 4). Extract boundary points (x, y) on ∂S+

(X, Y ) ∈ ∂Di as

y = max
X∈Γi

√
Y 2 − (x − X)2. (8)

where Γi is a domain of X where (X, Y ) ∈ ∂Di

satisfies. Count the minimum number of circles
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Fig. 7. Estimated image with the proposed method for a
convex target with noise.

which constitute S+, and define the number as
NC. If NC > 2, determine

∂Ti = ∂S+, (xmin ≤ x ≤ xmax), (9)

where xmin = R(Xmin, Xmin +∆X) and xmax =
R(Xmax, Xmax − ∆X).
If NC = 2, compensate a phase rotation for
s(X, Y ) by π/2 and renew the quasi wavefronts
as (X, Yc), and extract boundary points (x, y)
on ∂S× as

y = min
X∈Γi

√
Y 2

c − (x − X)2. (10)

Determine

∂Ti = ∂S×, (xmin ≤ x ≤ xmax), (11)

where xmin = R(Xmax, Xmax−∆X) and xmax =
R(Xmin, Xmin + ∆X).

Step 5). Set i = i + 1, and iterate Step 3) and 4)
until ∂DT is empty.

Step 6). Estimate the target boundary as ∂T =∑

i

∂Ti.

5. PERFORMANCE EVLUATION

5. 1. Shape estimation examples

We evaluate the estimation accuracy of SEABED
and the proposed method. We fix the correlation
length to 0.1λ from the results of 3.2. Fig. 7 shows
the estimated image where we apply the proposed
method to the same data as Fig. 2. The estimated
image with the proposed method achieves a stable
and high-resolution imaging than SEABED, espe-
cially around the edge. This is because the proposed
method does not spoil the information of the incli-
nation of the target shape.

Next, we add a white noise to the received data
s
′
(X, Y ) calculated with the FDTD method. Fig. 8
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Fig. 8. Output of the matched filter for a convex target.
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Fig. 9. Estimated image with SEABED for a convex target

with noise to s
′
(X, Y ).
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Fig. 10. Estimated image with the proposed method for a

convex target with noise to s
′
(X, Y ).

shows the output of the matched filter with the trans-
mitted waveform. In this case, S/N is about 5.5 dB.
Here we define S/N as

S/N =
1

σ2
N(Xmax − Xmin)

∫ Xmax

Xmin

max
Y

|s(X,Y )|2dX,

(12)
where Xmax and Xmin is the maximum and minimum
antenna location respectively, and σN is the standard
deviation of noise. Fig. 9 and 10 show the estimated
image with SEABED and the proposed method, re-
spectively. The image of SEABED is not accurate es-
pecially around the edges of the target. On the con-
trary, the image obtained by the proposed method
is stable, although the image around the edge is not
precise compared with Fig. 7. This is because the
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Fig. 11. Output of the matched filter for a concave target.
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Fig. 12. Estimated image with SEABED for a concave target

with noise to s
′
(X, Y ).
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Fig. 13. Estimated image with the proposed method for a

concave target with noise to s
′
(X, Y ).

edge diffraction waveform is different from the trans-
mitted waveform. We should estimate the scattered
waveform by using the estimated image to enhance
the accuracy [10]. This will be an important future
work.

Next, we deal with the scattered signals for a con-
cave target. Fig. 11 shows the output of the matched
filter. S/N is about 8.0 dB. Figs. 12 and 13 show
the estimated images for the concave target with
SEABED and the proposed method, respectively.
The proposed method can estimate a more stable and
accurate image than SEABED. The phase rotation



of the scattering at the concave surface is correctly
compensated. The calculation time of the algorithm
is within 0.1 sec with Xeon 3.2 GHz processor, which
is short enough for real time imaging. However, false
images are seen above the target boundary due to
multiple scattering. This is also a future task to de-
velop a robust algorithm without false images.

6. CONCLUSION

We proposed a stable and fast imaging method us-
ing the envelope of circles. We clarified that the con-
vex and concave target boundary can be expressed
as a boundary of union and intersection set of circles
obtained by quasi wavefronts, respectively. We clar-
ified that the proposed method can estimate stable
and accurate images compared with SEABED in nu-
merical simulations. Besides, the proposed method
achieves a fast imaging like SEABED. It is an im-
portant future work to extend this algorithm to 3-
dimensional problem, and achieve a higher resolution
to compensate the waveform distortion.
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