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Abstract—Near field radar employing UWB (Ultra Wideband)
signals with its high range resolution provides various sensing
applications. It enables a robotic or security sensor that can
identify a human body even in invisible situations. As one of
the most efficient radar algorithms, the RPM (Range Points
Migration) is proposed. This achieves fast and accurate esti-
mating shapes of surfaces, even for complex-shaped targets by
eliminating the difficulty of connecting range points. However, in
the case of a complicated target surface whose variation scale is
less than wavelength, it still suffers from image distortion caused
by multiple interference signals mixed together by different
waveforms. As a substantial solution, this paper proposes a
novel range extraction algorithm by extending the Capon, known
as FDI (Frequency Domain Interferometry). This algorithm
combines reference signal optimization with the original Capon
method to enhance the accuracy and resolution for an observed
range into which a deformed waveform model is introduced. The
result obtained from numerical simulation proves that super-
resolution UWB radar imaging is accomplished by the proposed
method, even for an extremely complex-shaped targets including
edges.

I. I NTRODUCTION

UWB pulse radar with high range resolution promise for
various sensing techniques especially for the near field. This
radar is applicable to non-contact measurement for reflector
antennas or aircraft bodies that have specular surfaces, or to
robotic sensors that can identify a human body, even in a blurry
vision such as a dark smog in disaster areas. In addition, it
is suitable for surveillance or security systems for intruder
detection or aged care, where an optical camera has the serious
problem of privacy invasion in the case for living places. While
many kinds of radar algorithms have been developed [1]–[3],
they are still inappropriate for the above applications because
of a large amount of calculation time or inadequate image
resolution. Accepting the problems occurs in conventional
techniques, a number of radar imaging algorithms have been
already proposed, which accomplish a real-time and high
resolution surface extraction beyond wavelength [4]–[6]. As a
high-speed and accurate surface estimating method applicable
to various target boundaries, the RPM algorithm has been
proposed [7]. This algorithm directly estimates an accurate
DOA (Direction Of Arrival) with a global characteristic of
observed range points, avoiding the difficulty in connecting
range points. The RPM is based on a simple idea, yet, it offers

an accurate target surface including the complex-shaped target
that principally creates an extremely complicated range map.

However, this algorithm suffers from a serious image dis-
tortion, in the case of more complicated target which has a
surface variation less than wavelength or has many convex
and concave edges. This distortion is caused by the richly
interfered signals scattered from the multiple scattering centers
on the target surface. These components are received within a
range scale smaller than wavelength, and are hardly separated
by the conventional range extraction methods, such as the
Wiener filter.

To overcome this difficulty, this paper proposes a novel
range extraction algorithm by extending the Capon method.
While the Capon is useful for enhancing the range resolution
based on the FDI [8], the resolution and accuracy of this
method significantly depend on a reference waveform such
as transmitted wave. In general, the scattered waveform from
the target with wavelength scale differs from the transmitted
one [9], and the range resolution given by the original Capon
method deteriorates due to this deformation. To outperform the
original Capon, this paper extends the original Capon so that it
optimizes the reference signal using the simplified waveform
model. The optimized reference signal significantly enhances
the range resolution and accuracy of the Capon, and brings
out the utmost performance of the RPM algorithm. The result
obtained from numerical simulation verifies that the proposed
algorithm combining the RPM and the extended Capon accom-
plishes a super-resolution imaging, where a complex-shaped
surface with edges is accurately extracted.

II. SYSTEM MODEL

Fig. 1 shows the system model in the 2-dimensional model.
It assumes the mono-static radar, and an omni-directional an-
tenna is scanned along thex-axis. It is assumed that the target
has an arbitrary shape with a clear boundary. The propagation
speed of the radio wavec is assumed to be known constant. A
mono-cycle pulse is used as the transmitting current. The real
space in which the target and antenna are located, is expressed
by the parameters(x, z). The parameters are normalized byλ,
which is the central wavelength of the pulse.z > 0 is assumed
for simplicity. s′(X, Z ′) is defined as the received electric field
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Fig. 1. System model.

at the antenna location(x, z) = (X, 0), whereZ ′ = ct/(2λ)
is a function of timet.

III. RPM A LGORITHM

Various kinds of radar imaging algorithms based on an aper-
ture synthesis, time reversal or range migration methods, have
been proposed [1]–[3]. As the real-time imaging algorithm,
the SEABED has been developed, which uses a reversible
transform BST (Boundary Scattering Transform) between the
observed ranges and the target boundary [4]. In addition,
another high-speed imaging algorithm termed Envelope has
been developed aiming at enhancing the image stability of
SEABED, by avoiding the range derivative operations [5],
[6]. While these algorithms accomplish real-time and high-
resolution imaging for a simple shaped object, such as trape-
zoid, pyramid or sphere shapes, it is hardly applicable to a
complex-shaped or multiple targets because they both require
correctly connected range points.

As one of the most promising algorithm applicable to
various target shapes, the RPM algorithm has been proposed
[7]. This assumes that a target boundary point(x, z) exists on
a circle with center(X, 0) and radiusZ, and then employs an
accurate DOA (shown asθ in Fig. 1) estimation by making
use of the global characteristics of the observed range map.
The optimumθopt is calculated as

θopt(q) = arg max
0≤θ≤π∣∣∣∣∣∣∣∣
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whereq = (X,Z), qi = (Xi, Zi) and andNq is the number
of the range points.θ (q, qi) denotes the angle from thex
axis to the intersection point of the circles, with parameters
(X, Z) and(Xi, Zi). The constantsσθ andσX are empirically
determined. The detail of this algorithm is described as in
[7]. The target boundary(x, z) for each range point(X, Z) is
expressed asx = X + Z cos θopt(q) and z = Z sin θopt(q).
This algorithm ignores range points connection and produces
accurate target points, even if an extremely complicated range
distribution is given. Thus, the inaccuracy occurring in the
SEABED and Envelope, can be substantially avoided using
this method. Fig. 2 shows the example of the RPM under the
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Fig. 2. True range points (upper) and extracted target points with RPM
(lower).
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Fig. 3. Output of Wiener filter and extracted range points.

assumption that the true range points are given as in the upper
side of this figure. Here,s(q) = 1.0 is set for simplicity.
The lower side of Fig. 2 shows a distinct advantage for this
algorithm that it accurately locates the target points, even if
the complex-shaped target is assumed.

The performance example of RPM is presented here, where
the received electric field is calculated by the FDTD (Finite
Difference Time Domain) method. The former study [7]
employs the Wiener filter in order to extract an range point for
each location. The range points(X,Z) are extracted from the
peaks ofs(X, Z ′) which are beyond the determined threshold.
Fig. 3 shows the output of the Wiener filter, and the extracted
range points, where the target boundary is assumed as in
Fig. 1. The received signals are calculated at 101 locations
between−2.5 ≤ X ≤ 2.5. A noiseless environment is
assumed. Fig. 4 presents the comparison between the true and
extracted range points in this case. It shows that the range
points suffer from the inaccuracy caused by the peak shift of
s(X, Z ′) due to the multiple interfered signals within a range
scale less than wavelength. Fig. 5 shows the target points,
when the RPM is applied to the range points in Fig. 4. This
figure indicates that the inaccuracy of range points distorts the
target image, which is totally inadequate for identifying the
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Fig. 4. Extracted range points with Wiener filter.
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Fig. 5. Estimated target points with RPM and the Wiener filter.

target shape, especially for the target sides or concave edges. In
addition, these ranges include small errors caused by deformed
scattered waves, whose characteristics are detailed in [9].

To enhance the accuracy for range points extraction, the
SOC (Spectrum Offset Correction) algorithm has been de-
veloped aiming at compensating the range shift due to the
waveform deformation [6]. It is, however, confirmed that the
range accuracy of the SOC is entirely inadequate in such as
richly interfered situation. This is because the range errors in
this case are dominantly caused by the peak shift of the Wiener
filter due to the interference of multiple scattering echoes. Fur-
thermore, the SOC is based on the center periods estimation
of the scattered signal, when each signal should be correctly
resolved in the time domain. This is, however, difficult when
the multiple interfered signals are mixed together in a time
scale less than its center period.

IV. PROPOSEDRANGE EXTRACTION ALGORITHM

To overcome the difficulty described above, this paper
proposes a novel algorithm for range points extraction, by
extending the Capon method. The Capon algorithm is one of
the most powerful tools for enhancing range resolution based
on FDI. It is confirmed, however, that the scattered waveform
deformation distorts the range resolution and accuracy of the
original Capon method. As a solution for this, the proposed
method optimizes the reference signal used in the Capon. This
method introduces a reference waveform model, based on the
fractional derivative of the transmitted waveform as,

Sref(ω, α) = (jω)αStr(ω)∗, (2)

whereStr(ω) is the angular frequency domain of the transmit-
ted signal and∗ denotes a complex conjugate.α is a variable
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Fig. 6. Waveform comparison for each antenna location in polygonal target.

which satisfies|α| ≤ 1.
The waveform comparison using this simplified model is

demonstrated as follows. Fig. 6 shows the scattered waveform
from the polygonal target received at the different locations,
and the estimated waveforms with the optimizedα in Eq. (2).
This figure indicates that a scattered waveform differs depend-
ing on antenna location, or a local shape around the scatter-
ing center [9]. This deformation distorts the resolution and
accuracy of the original Capon method, because it employs a
phase and amplitude interferometry in each frequency between
the reference and scattered waveforms. Fig. 6 also shows that
each estimated waveform with the optimizedα accurately
approximates an actual deformed waveform, where the range
accuracy is estimated within 0.01λ when using the matched
filter.

Based on this waveform model, the observed vector
V n(α, L) is defined as,

V n(α, L) =
[

S(ωn,L)
Sref(ωn, α)

, · · · ,
S(ωn+M−1,L)

Sref(ωn+M−1, α)

]T

, (3)

where S(ω, L) denotes the received signal in angular fre-
quency domain atL = (X, 0), andM denotes the dimension
of V n(α, L). Here, in order to suppress a range sidelobe
caused by the coherent interference signals, the frequency
averaging is used. The averaged correlation matrixR(α,L)
is defined as,

R(α,L) =
N−M+1∑

n=1

znV n(α, L)V H
n (α,L), (4)

whereH denotes the Hermitian transpose.N is the total num-
ber of the frequency points, and determined by the maximum
frequency band of the transmitted signalStr(ω). M ≤ N
holds.zn is defined byzn = 1/(N − M + 1) for simplicity.
The output of the extended Caponscp(α, Z ′,L) is defined as,

scp(α, Z ′, L) =
S−1

0

aH(Z ′)R(α, L)−1a(Z ′)
, (5)
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Fig. 7. Output of the original Capon method and extracted range points.
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Fig. 8. Comparison between the true and extracted range points with the
original Capon method.

where a(Z ′) denotes the steering vector ofZ ′ for each
frequency,

a(Z ′) =
[
e−jω12Z′λ/c, e−jω22Z′λ/c, ..., e−jωM2Z′λ/c

]T

, (6)

S0 is defined as

S0 =

√∫
{aH(Z ′)R(α,L)−1a(Z ′)}−2 dZ ′. (7)

The normalization withS0 enables us to compare the am-
plitude of scp(α, Z ′, L) with respect toα. Then, the local
maximum ofscp(α,Z ′, L) for α andZ ′ offers an optimized
range resolution in the Capon method. Finally, it determines
the range points(X, Z), which satisfies the following condi-
tions,

∂scp(α,Z ′, L)/∂α = 0
∂scp(α,Z ′, L)/∂Z ′ = 0

scp(α, Z ′, L) ≥ max
Z′

βscp(α,Z ′, L)



 ,

whereβ is empirically determined. This algorithm selects an
accurate range point by enhancing the range resolution of the
Capon method with the optimized reference signal. Each target
point (x, y, z) is calculated from the group of range points in
Eq. (1), that is the RPM.

A. Performance evaluation in numerical simulation

This section presents the examples for each range extraction
method, where the same data as in Fig. 3 is used. Fig. 7 shows
the output of the original Capon method and the extracted
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Fig. 9. Estimated target points with RPM and the original Capon method.
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Fig. 10. Output of the extended Capon method and extracted range points.
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Fig. 11. Comparison between the true and extracted range points with the
extended Capon method.

range points, which corresponds toα = 0 in Eq. (8), i. e. the
waveform deformation is not considered in this case. Fig. 8
shows the comparison between the true and extracted range
points in this case. Here,N = 60, M = 20 and β = 0.3
are set. In this figure, the number of the accurate range
points increases because the original Capon enhances the range
resolution. Fig. 9 shows the estimated target points by using
the original Capon method. This figure also shows that it
enhances the accuracy of the location of imaging points, and
the target points are accurately located around the target sides
and edges. However, an inaccuracy around the concave edge
region is recognized, and some parts of the target boundary
are still not reconstructed. This is because of the distorted
resolution and accuracy of ranges caused by the reference and
actual scattered waveform being in-coincidence.

On the contrary, Fig. 10 showsscp(α,Z ′, L) with the
optimizedα, and the range points extracted. Fig. 11 offers the
same view in Fig. 8 in this case. This figure verifies that the
extracted range points are accurately located, and the number
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Fig. 12. Estimated target points by using the proposed method.
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Fig. 13. Estimated image with the SAR.

of accurate range points increases compared with the original
Capon method. Fig. 12 shows the estimated target points ob-
tained by the RPM. This figure shows these points accurately
reconstruct the convex or concave edge region, and offer a
substantial information for identifying the complicated target
shape, even with convex or concave edges. This is because
the proposed method enhances the resolution ofscp(α,Z ′, L)
with respect to the scattered waveform deformation. Thereby,
the peaks embedded, which are regarded as the trivial value in
the output of the original Capon, can be detected by optimizing
the reference waveform.

As the comparison for the other methods not specified to
the clear boundary extraction, the SAR (Synthetic Aperture
Radar) method is introduced. This algorithm is the most useful
for radar imaging [1], and the near field extension is applied
here [7]. Fig. 13 shows the example of the SAR. While the
image produced by the SAR is stable, its spatial resolution is
substantially inadequate for recognizing the concave or convex
edges. This result also proves the advantage for the proposed
method, in terms of high-resolution imaging.

Here, the quantitatively analysis is introduced byε as

ε(xi
e) = min

x
‖x − xi

e‖, (i = 1, 2, ..., NT), (8)

wherex and xi
e express the location of the true target point

and that of the estimated target points, respectively.NT is the
total number ofxi

e. Fig. 14 plots the number of the estimated
points for each value ofε. This figure verifies that the number
of the accurate target points significantly increases, compared
with other conventional algorithms. The mean valuesε for each
method are5.66× 10−2λ for the Wiener filter,2.18× 10−2λ
for the original Capon, and1.23 × 10−2λ for the proposed
method. This result quantitatively proves the effectiveness of
the proposed range extraction algorithm. Furthermore, it is
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confirmed that the accuracy can be held to within5.0×10−2λ,
if the S/N≥ 40 dB is obtained.

V. CONCLUSION

This paper proposed a novel range extraction algorithm
as the extended Capon method, known as the frequency
domain interferometry. To enhance the image quality of the
RPM, including the case for complicated shaped objects with
concave or convex edges, this method extends the original
Capon so that it optimizes the reference signal with a simpli-
fied waveform model. It has a substantial advantage that the
range resolution is remarkably enhanced, even if the different
scattered waves are mixed together within the range scale
less than wavelength. The result from numerical simulation
verified that the combination with the extended Capon and
RPM significantly improved the accuracy for the boundary
extraction for the complex-shaped targets with edges.
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