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ABSTRACT

Microwave 3-dimensional reconstruction techniques exploit-
ing multiple ISAR (Inverse Synthetic Aperture Radar) images
have been well established, and are suitable for the recogni-
tion of artificial targets such as aircrafts or ships. However,
the existing algorithms assume only an aggregation of mul-
tiple points, and most require the tracking of the multiple
points over multiple ISAR images. In the case of a solid ob-
ject with a continuous boundary, such as a wire or polyhedral
structure, these algorithms severely suffer from the inaccu-
racy for 3-D imaging, owing to scattering centers shifting on
the target surface in terms of the observation angle. To tackle
the above difficulty, this paper extends RPM (Range Points
Migration) method to the ISAR observation model, where
a double mono-static model is introduced to suppress cross-
range ambiguity. Numerical simulation demonstrates that the
proposed algorithm has a distinct advantage in accurate 3-D
imaging, even for not point-wise targets.

Index Terms— Accurate 3-D reconstruction, Multiple
ISAR images, Solid objects with continuous boundary, RPM
algorithm

1. INTRODUCTION

Microwave imaging systems are indispensable tools for geo-
surface measurement or target recognition even in an opti-
cally harsh environment, such as in conditions of adverse
weather or darkness. In particular, coast-guard surveillance
radar strongly requires an accurate 3-D target reconstruction
algorithm that can discriminate boats carrying refugees or
unidentified ships. As a promising approach for objects with
a discontinuous height distribution, such as buildings, air-
crafts or ships, 3-D imaging algorithms based on the layover
in the ISAR imagery have been developed applying high-
resolution spectral estimation theory [1] or combining the
interferometry basis for the 3-D inverse problems [2].

In most recent literature [3], the 3-D geometry is more
accurately obtained by exploiting sequential ISAR images,
so-called ISAR movies, where target points are sequentially
tracked over multiple ISAR images. Although this method re-
alizes an accurate 3-D reconstruction of an object constituted

by multiple points, it is not appropriate for solid objects with
continuous boundaries, such as wires or polyhedral structures.
This is because (1) each scattering center on a boundary con-
tinuously shifts along the boundary in terms of rotation angle
and (2) it requires a correct connection of the focused points
over the multiple ISAR images.

On the contrary, several high-resolution and accurate 3-
D imaging algorithms for near-field UWB (Ultra Wideband)
radar have been developed [4, 5]. One of the most flexible and
accurate imaging tools, the RPM algorithm, has been estab-
lished [5], which is applicable to complex-shaped or multiple
objects. Notably, this method directly estimates an accurate
DOA (direction of arrival) employing statistical properties for
the range point distribution, and does not require their connec-
tion.

With this background, the present paper newly introduces
a 3-D imaging algorithm by extending the original RPM al-
gorithm [5] to a rotating target model. In addition, this study
employs a double mono-static model to suppress cross-range
ambiguity in imaging. Furthermore, the extended RPM di-
vides the range points into two types to enhance imaging ac-
curacy in each cross-range compression. Numerical simula-
tion with a 1/100 downscale model shows that the proposed
method accomplishes accurate 3-D reconstruction of a target
even for an object with a continuous boundary.

2. OBSERVATION MODEL

Figure 1 shows the system model. It assumes mono-static
radar, and an omni-directional antenna is set at(x1, 0, z0).
The model also assumes that a target has arbitrary shape
(e. g. multiple points or a general solid object) and is at
z ≤ z0, for simplicity. A target rotates at a uniform angular
velocity about thez axis, and its angular velocity is known.
The following section deals with the equivalent observation
model of an antenna scanning along a circle with radiusx1

and center(0, 0, z0) without loss of generality. The real space
expressed as(x, y, z) is normalized by the central wavelength
of the transmitted pulseλ.
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Fig. 1. System model.

3. CONVENTIONAL METHOD

A method for high-resolution 3-D imaging based on range-
Doppler azimuthal compression has been already proposed
[3], which tracks the focused points over multiple ISAR im-
ages. This section briefly explains the 3-D reconstruction for
this method, and states the problem exemplified by a typical
example.

Here,I(x, y; θn) is defined as the ISAR obtained image
from observation angleθn, (n = 1, · · · , N). The sequential
images can be obtained employing PFA (Polar Format Algo-
rithm) with low computational load [6]. The significant fo-
cused points extracted from local maxima ofI(x, y; θn) are
denotedpn,m ≡ (xn,m, yn,m). Figure 2 shows the spatial re-
lationship between the image planeI(x, y; θn), and them th
target point aspm, at observation angleθn. This method then
estimates the target point asp̂n+1,m in the next ISAR image
on basis of the the nearest neighbor scheme;

p̂n+1,m = arg min
pn+1,m′

‖pn+1,m′ − pc − R(∆θ)(pn,m − pc)‖,

(1)
where,R(∗) denotes the rotation matrix for the clockwise di-
rection,pc is the location of the center of the assumed imag-
ing planeI(x, y; θn), and∆θ is the interval of the rotation
angles. Finally, the target’s 3-D coordinatespm are obtained
by the least squared errors approach;

pm = (AT WA)−1AT Wbm + pc, (2)

whereW , A andbm are defined as

W ≡ diag
[
I(pn,m; θn), · · · , I(pn+L,m; θn+L)

I(pn,m; θn), · · · , I(pn+L,m; θn+L)
]
, (3)

A ≡ [ex(θn), · · · , ex(θn+L), ey(θn), · · · ,ey(θn+L)]T ,

(4)

bm ≡ [xn,m, · · · , xn+L,m, yn,m, · · · , yn+L,m]T . (5)
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Fig. 2. Spatial relationship between the image plane and tar-
get point.

L is the number of ISAR images used for 3-D reconstruction,
ex(θn) denotes a 3-D unit vector directed from the observa-
tion point to pc, andey(θn) is a unit vector orthogonal to
ex(θn) on the imaging planeI(x, y; θn) as shown in Fig. 2.

Here, an example of reconstruction employing the pro-
posed method is numerically investigated to discuss its imag-
ing property. For simplicity, a scattered electric field for each
rotation angleθ is calculated following the Born approxima-
tion as,

s(θn, f) =





M∑

m=1

Ame−j
4πfRm(θn)

c , (fmin ≤ f ≤ fmax),

0, (Otherwise),

(6)

whereM is the total number of point scatterers andRm(θn)
denotes the distance between the antenna location and the
m th point scatterer. Am is the reflection amplitude for
each scatterer and is constant in this case. The total num-
ber of observation samples is 361 points for0 ≤ θn ≤ 2π.
(x1, 0, z0) = (−150 cos φ, 0, 150 sin φ), whereφ = π/6
holds. The minimum and maximum frequenciesfmin and
fmax in creating the received signal, are 24 and 40 GHz,
respectively. Figures. 3 and 4 illustrate the ISAR images with
θn = 0 and θn = π/9, and the corresponding 3-D image
obtained employing the conventional method, respectively,
where the two circular objects are crisscrossed as in Fig. 1.
This example clarifies a nontrivial problem that the 3-D im-
age obtained with the conventional method suffers severely
from inaccuracy, and offers only part of the target boundary.
This problem mainly arises because, in the case of a target
with a continuous boundary, the scattering center continu-
ously moves along the target boundary as the target rotates.
The approach for the tracking points in ISAR images is then
invalid, and the imaging accuracy essentially deteriorates.



-15 -10 -5  0  5  10  15
x

-15

-10

-5

 0

 5

 10

 15

z

 0

 0.002

 0.004

 0.006

 0.008

 0.01

-15 -10 -5  0  5  10  15
x

-15

-10

-5

 0

 5

 10

 15

z

θ=0 θ=π/9

Fig. 3. ISAR images for two circular targets forθ = 0 (left)
andθ = π/9.
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Fig. 4. 3-D reconstruction image obtained by the conven-
tional ISAR based method.

4. RPM EXTENDED TO ISAR MODEL

As a solution to the previous problem, this paper extends the
original RPM method [5] to the ISAR model. First, this exten-
sion employs two mono-static observation models as shown
in Fig. 5 to avoid reconstruction ambiguity along the cross
range direction. That is, the spatial interferometry between
the two antennas along thex axis (antennas#1 and#2) is
effectively used to obtain sufficient resolution in the cross-
range direction. In this model, we assume that the anten-
nas scan along two circles whose centers are(0, 0, z0) and
radii arex1 and x2. Each antenna location is redefined as
(X, Y, z0) ≡ (xk cos θ, xk sin θ, z0), (k = 1, 2), and the sig-
nificant rangeR is extracted from the local maximum of the
received signal after applying the Capon method to the ob-
servation data in the frequency domain [7], and a group of
“range points”qi = (Xi, Yi, Ri), (i = 1, · · · , NR) is ob-
tained, whereNR denotes the total number of range points.

This method basically assumes that the target boundary
point corresponding toqi exists on the sphere with center
(Xi, Yi, z0) and radiusRi. The location of the scattering
point on the target for eachqi is then determined from the spa-
tial distribution of the intersection points among the spheres
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Fig. 5. System model in the proposed method.

determined for neighboring range points;

p̂(qi) = arg max
pint(qi,qj ,qk)∈Pi

NM∑

l=1

NS∑

m=1

f(pint(qi, qj , qk))

× exp

{
−
‖pint(qi, qj , qk) − pint(qi, ql, qm)‖2

2σ2
r

}
, (7)

wherepint(qi, qj , qk) denotes the intersection point among
the three circles, determined by the range pointsqi, qj and
qk, andPi ≡

{
pint(qi, qj , qk)|qj ∈ QM

i , qk ∈ QS
i

}
holds.

QM
i expresses a set of range points, where

√
X2

i + Y 2
i =√

X2
j + Y 2

j is satisfied. σr is a constant empirically deter-

mined. On the other hand,QS
i expresses a set of range points,

where
√

X2
i + Y 2

i 6=
√

X2
k + Y 2

k is satisfied. Fig. 6 illus-
trates an example ofQM

i , QS
i and the intersection point. The

evaluation function is also defined asf(pint(qi, qj , qk)) ≡

s(qj) exp
{
−D(qi,qj)

2

2σ2
X

}
+s(qk) exp

{
−D(qi,qk)2

2σ2
X

}
, where

s(qj) is the output of the Capon,σX is also an empirically de-

termined constant, andD(qi, qj) =
√

(Xi − Xj)2 + (Yi − Yj)2.
This method has the distinct advantage that it does not require
the linking of range points, and realizes accurate 3-D imaging
even for targets of complex-shape.

5. PERFORMANCE EVALUATION

A numerical example of applying the proposed 3-D recon-
struction method is presented. The same signal model as in
Eq. (6) is used in this case. Figures. 7 and 8 are respectively
3-D images obtained employing the proposed method in the
noiseless case and in the case of S/N=20dB. Here, S/N is de-
fined as the ratio of the average signal power to that of noise in
the frequency domain.σX = 20λ andσr = 0.5λ are set. The
figures prove that the proposed method obtains an accurate
image around the whole region of the target, by exploiting a
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Fig. 6. Spatial relationship among antennas and intersection
point.
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Fig. 7. 3-D reconstruction image obtained by the proposed
method in noiseless situation.

global characteristic of the range points instead of connecting
them. Here, quantitative analysis employsεi, which is defined
as

εi = min
ptrue

‖ptrue − pi
e‖, (i = 1, 2, ..., NT), (8)

whereptrue andpi
e are the locations of the true and estimated

target points, respectively.NT is the total number ofpi
e. Fig-

ures 9 plots the number of estimated points for each value of
ε in the cases of Figs. 4, 7 and 8. The mean value ofεi asε is
4.61λ for the conventional method,0.39λ and0.35λ for the
proposed method in noiseless and S/N=20dB cases, respec-
tively. Note that, the reconstruction range in noisy situation is
smaller than that in noisy situations, which causes slight ac-
curacy improvement from the noiseless situation. This result
quantitatively demonstrates the effectiveness of the proposed
method for accurate 3-D imaging, even for an object with a
continuous boundary.

6. CONCLUSION

This paper proposed a novel 3-D reconstruction algorithm by
extending the original RPM algorithm to the ISAR model.
In this extension, a double mono-static model is introduced
to suppress cross-range ambiguity. The notable advantage of
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Fig. 8. 3-D reconstruction image obtained by the proposed
method at S/N=20dB.
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Fig. 9. Histogram of target points for each errorεi.

this method is that it is applicable to an object with a con-
tinuous boundary, for which a scattering center shifts along
the target boundary. A numerical result confirmed that our
method remarkably enhances accuracy in 3-D target recon-
struction, even at lower S/N.
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