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Noise-Robust Distorted Born Iterative Method with Prior Estimate
for Microwave Ablation Monitoring

Yuriko TAKAISHI†, Nonmember and Shouhei KIDERA†a), Member

SUMMARY A noise-robust and accuracy-enhanced microwave imag-
ing algorithm is presented for microwave ablation monitoring of cancer
treatment. The ablation impact of dielectric change can be assessed by
microwave inverse scattering analysis, where the dimension and dielectric
drop of the ablation zone enable safe ablation monitoring. We focus on
the distorted Born iterative method (DBIM), which is applicable to highly
heterogeneous and contrasted dielectric profiles. As the reconstruction ac-
curacy and convergence speed of DBIM depend largely on the initial esti-
mate of the dielectric profile or noise level, this study exploits a prior esti-
mate of the DBIM for the pre-ablation state to accelerate the convergence
speed and introduces the matched-filter-based noise reduction scheme in
the DBIM framework. The two-dimensional finite-difference time-domain
numerical test with realistic breast phantoms shows that our method signif-
icantly enhances the reconstruction accuracy with a lower computational
cost.
key words: Microwave ablation monitoring, Microwave imaging, Dis-
torted born iterative method (DBIM), Noise reduction.

1. Introduction

There is much research that supports the effectiveness of
microwave ablation (MWA), which offers a minimally in-
vasive, high-speed treatment by delivering thermal damage
to cancerous tissues [1], including a number of clinical in-
vestigations into its impact on liver tumors [2] and other
cancers such as those located in the kidney or breast. To
avoid serious damage to normal tissues during ablation, a
real-time and accurate monitoring modality is required for
MWA treatment. Although various imaging modalities have
been developed for this purpose, such as magnetic reso-
nance imaging (MRI) [3] and ultrasound imaging, the MRI
is unable to achieve real-time monitoring, and ultrasound
imaging suffers from clutter responses because of heated
microbubbles [4].

The microwave monitoring tool is regarded as one
of the most promising alternatives to MRI and ultrasound
imaging. It can overcome the above limitations and has
numerous advantages in terms of compactness and com-
patibility with MWA treatment tools [7], where the dimen-
sional evolution of the ablation zone can be characterized
by examining the change of forward-scattered signals from
the MWA probe to the external receivers. Some stud-
ies [5], [6] have demonstrated significant drops in dielec-
tric properties after the ablation because of tissue hydra-
tion or thermal changes, thus requiring quantitative imaging
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for complex permittivity such as the distorted Born itera-
tive method (DBIM) [8], which requires less assumptions,
such as homogeneity or uniform dielectric drops in ablation
zone Some real-time ablation zone estimators that exploit
the signal difference between the pre-ablation and during
ablation periods have been developed [9], [10], but these es-
timators require prior knowledge of the dielectric drop from
the pre-ablation state and suffer from inaccuracy due to ho-
mogeneous assumptions or too much simplified propaga-
tion model. To avoid the above limitation, G. Chen et al
introduced a tomographic approach using time-differential
scattered data [11]. However, the reconstruction accuracy
largely depends on the initial estimate of the dielectric map
[8] and if it is not possible to obtain accurate prior knowl-
edge of the dielectric profile, i.e., the spatial distribution of
the complex permittivity of the breast at the pre-ablation
state, the approach would suffer from a sluggish conver-
gence and would be insufficiently accurate. In real terms,
the ablation zone image should be updated within a minute,
which is a challenge for the tomographic approaches be-
cause it requires an iterative use of a forward solver, such
as the finite-difference time-domain (FDTD) method.

To alleviate the above problem of dependency on the
initial estimate and the computational cost, this study in-
troduces a novel scheme for ablation zone monitoring by
exploiting the feature of the DBIM that requires an initial
background medium, i.e., an dielectric profile assumed in
the initial iteration step in the DBIM sequences, which is
similar in both pre-ablation and during ablation states. How-
ever, since it is still impractical to obtain an accurate dielec-
tric profile of the pre-ablation state as a prior knowledge, the
proposed method firstly reconstructs the pre-ablation state
with the original DBIM, where the initial estimate is set to
the homogeneous media with an average complex permit-
tivity of the breast. And then, the during ablation profile is
sequentially updated by regarding the pre-ablation state as
an updated background medium in the DBIM scheme. Fur-
thermore, this study introduces matched-filter-based noise
reduction in the DBIM framework, where its cost function
is appropriately updated without a loss of computational ef-
ficiency. The two-dimensional (2-D) FDTD-based numeri-
cal investigations, assuming the MRI-derived realistic phan-
tom, demonstrate that our proposed method considerably
enhances the reconstruction accuracy and the noise robust-
ness in the DBIM-based quantitative monitoring of the di-
electric change of the ablation zone.

Copyright c⃝ 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 1: Schematic diagram of the proposed method, where a
prior profile in pre-ablation state is provided by the original
DBIM.

2. Method

We assume a typical microwave monitoring observation
model, where multiple transmitters and receivers are config-
ured at the external area of the object and Et(rt, rr; t) is the
total electric field at time t, with rt and rr being the positions
of the transmitter and receiver, respectively.

2.1 Distorted Born Iterative Method (DBIM)

The forward problem in the electromagnetic scattering phe-
nomena is formulated by solving the Helmholtz-type inte-
gral equation as:

Es(r, ω) ≡ Et(r, ω) − Ei(r, ω)

= ω2µ

∫
V

Gb(r, r′, ω)Et(r′, ω)o(r′, ω)dr′, (1)

whereω denotes the angular frequency, Et(r, ω) and Ei(r, ω)
are the total electric fields with and without the presence of
object, respectively. Ω denotes the region of interest (ROI)
area, and o(r, ω) ≡ ϵ(r, ω) − ϵb(r, ω) is an object function,
where ϵb(r, ω) and Gb(r, r′, ω) denote the complex permit-
tivity and the Green’s function of the background media,
respectively.

Under the Born approximation, Eq. (1) is expressed as:

∆E(r, ω) ≡ Et(r, ω) − Et
b(r, ω)

≃ ω2µ

∫
V

Gb(r, r′, ω)Et
b(r′, ω)∆o(r′, ω)dr′,(2)

where ∆o(r, ω) ≡ o(r, ω) − ob(r, ω). To address a higher
contrast case, the DBIM recursively updates the background
media, the Green’s function and its total field, denoted
as ob(r, ω), Gb(r, r′, ω) and Et

b(r, ω), respectively, so that
|∆E(r, ω)|2 takes a minimum. Numerous studies have shown
that, although the DBIM produces an accurate target profile
even in highly heterogeneous biological media, there is still

an inherent problem in that it requires an appropriate initial
estimate to achieve accurate and high-speed imaging.

2.2 DBIM with Prior Estimate and Matched Filtering

2.2.1 Principle

This study introduces a promising approach to address the
above initial estimate dependency using the pre-ablation
DBIM result. First, the DBIM without prior knowledge (e.g,
homogeneous media with average complex permittivity) is
applied to the observation data at the pre-ablation state, and
its reconstructed object function, Green’s function and total
field are defined as ôpre

b (r, ω), Gpre
b (r, r′, ω) and Et,pre

b (r, ω),
respectively. Then, the dielectric profile at the during abla-
tion state is determined using the following cost function:

∆Ẽt(r, ω) =

ω2µ

∫
V

Gpre
b (r, r′, ω)Et,pre

b (r′, ω)∆opre(r′, ω)dr′, (3)

where ∆opre(r, ω) = o(r, ω) − ôpre(r, ω). The reconstructed
result is denoted as ôdur(r, ω). The dielectric profile of the
ablation zone is determined as:

∆ô(r, ω) = ôdur(r, ω) − ôpre(r, ω), (4)

Note that, the reconstruction accuracy of the DBIM signif-
icantly depends on the selection of the initial background
media, because it is based on the optimization scheme.
Then, an appropriate initial estimate of the background me-
dia could enhance the reconstruction accuracy with much
fewer iteration steps. Since the dielectric profile at the pre-
ablation state opre(r, ω) is relatively similar to that at the dur-
ing ablation state odur(r, ω), the DBIM requires far fewer it-
erations by replacing the background media as opre(r, ω).

Furthermore, for a noise-reduction purpose, the
matched filter process is introduced for the cost function of
the DBIM. It is well known that the matched filter (cross-
correlation process in the time-domain ) is the most noise-
robust filter and the cost function is then, modified as:

∆Ematch(r, ω) = ∆Ẽt(r, ω)E∗ref(ω) (5)

where ∗ denotes the complex conjugate and Eref(ω) denotes
the frequency response of the reference signal, which is usu-
ally observed as a transmitting signal in free-space.

2.2.2 Procedure

Figure 1 shows the schematic diagram of the proposed
method, which is detailed as follows:

Step 1) The dielectric profile at the pre-ablation state is
reconstructed by the DBIM as ôpre(r, ω) with the
matched filtered cost function in Eq. (5), where the
initial map oinit(r, ω) is given as ob(r, ω) by homoge-
neous media with the average complex permittivity
of the breast tissue.
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Fig. 2: Original profile of Debye parameter of ϵ∞. (a): Pre-
ablation state. (b): During ablation state.

Step 2) The dielectric profile at the during-ablation state is
reconstructed by the DBIM as ôdur(r, ω) with the
matched filtered cost function in Eq. (5), where the
initial map is given by ôpre(r, ω), that is, Eq. (3).

Step 3) The permittivity profile of the ablation zone ∆ô(r, ω)
is determined in Eq. (4).

3. Numerical Tests

3.1 Breast Phantom and Measurement Array

The numerical test, using the 2-D FDTD analysis of in-
house University of Wisconsin-Madison codes, is investi-
gated using the MRI-derived realistic numerical phantom
of the breast, a Class-3 “heterogeneously dense” phantom
(ID number 062204), which is available from [12]. The
frequency dependency for each breast tissue is modeled by
single-pole Debye models as

ϵ(ω) = ϵ∞ +
∆ϵ

1 + jωτ0
+
σ

jωϵ0
, (6)

using a frequency range of 0.1 to 5.0 GHz [13]. Figure 2
shows the map of ∆ϵ of the Class-3 breast phantom and
the observation geometry. The transmitted current is ex-
cited inside the breast tissue, which should be within the
fibroglandular tissue, including the 2 mm radius circular-
shape cancer with (ϵ∞,∆ϵ, σ) = (58.0, 20.0, 0.8S/m). The
15 receivers, which are situated in the air with equal spac-
ing, circle the breast tissues. The transmitted current has a
pulse with a center frequency of 2.45 GHz and a bandwidth
of 1.9 GHz. The cell size for the FDTD and the unknown
pixel in the DBIM is set to 2 mm. We assume that all Debye
parameters uniformly drop in the ablation zone, indicating
that the inside and outside dielectric properties have a het-
erogeneous map. The ratio between the pre-ablation and
during ablation states of complex permittivity is denoted as
ξ, and this simulation test the case, where the impact of the
ablation is ξ = 0.6 is investigated, namely, the uniform 40
% drops in all Debye parameters in the ablation zone, which
corresponds to an ablation of 99◦C of the bovine liver tissues
[5]. The ablation zone is modeled as ellipsoidal shape with
20 mm and 16 mm diameters along the x-axis and y-axis,
respectively as in Fig. 2.

Fig. 3: Reconstruction results of difference maps between
pre- and during ablation state for each Debye parameter by
DBIM based methods at noiseless case. First line: Original.
Second line: DBIM w/o prior estimate. Third line :DBIM
w prior estimate. First column: ϵ∞. Second column : ∆ϵ.
Third column : σ.

3.2 Results: Effect of Prior Estimate of Pre-ablation State

The results for validating the effectiveness of a prior esti-
mate of the pre-ablation state, that is, the process described
in Eq. (3), are discussed below. To eliminate the error
caused by noise in the discussion, a noiseless situation is
assumed. Figure 3 shows the difference of the DBIM recon-
struction results between the during and pre-ablation state
of each Debye parameter as ϵ∞, ∆ϵ, and σs, which are rep-
resentative forms of the differences of ∆ô(r, ω) in Eq. (4), in
assuming the single-pole Debye model as in Eq. (6). Here,
the number of iterations of DBIM is set to 10 in each case.
Table 1 summarizes the quantitative error comparison as cu-
mulative probabilities for each error criteria. Here, the error
values Errϵ∞ , Err∆ϵ , and Errσs denote the difference between
the true and estimated values of ϵ∞, ∆ϵ, and σs, respectively,
at each position of the ROI. As shown in these figures and in
Table 1, the DBIM reconstruction without prior knowledge
of pre-ablation results suffers from considerably inaccuracy,
and hardly estimates the actual dimension of ablation zone.
A reconstruction using pre-ablation prior knowledge, how-
ever, creates a more accurate ablation zone area, including
its quantitative dielectric drop. The computational times for
estimating the pre-ablation state are within 60 s for both
cases with or without using the matched filtering process,
which is an acceptable duration because a general temporal
evolution of the ablation zone occurs in a minute scale [5].

3.3 Results: Effect of Matched filter Noise Reduction

Next, we show the noise-robust feature of the matched-
filter-based noise reduction described in Eq. (5). Here, we
use the reference signal of the matched filter as the direct
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Table 1: Cumulative probability w or w/o prior estimate,
where the iteration number is 10 in noiseless case.

Errϵ∞ ≤ 2 Err∆ϵ ≤ 2 Errσs ≤ 0.1
w/o prior estimate 77.1 % 71.0 % 62.0 %
w prior estimate 95.2% 92.9 % 92.4 %

Fig. 4: Reconstruction results of difference maps between
pre- and during ablation state for each Debye parameter by
DBIM based methods at SNR = 10 dB. First line: DBIM w/o
prior estimate and matched filtering. Second line : DBIM w
prior estimate but w/o matched filter. Third line : DBIM w
prior estimate and matched filter. First column: ϵ∞. Second
column : ∆ϵ. Third column : σ.

propagation signal from the source to the receiver in a free-
space, where we have confirmed that this waveform is not
so much different from the forward scattering signal prop-
agating into the breast media. An additive white Gaussian
additive noise is directly added to each received signal in
the time domain, the relevance of which has been validated
in the number of studies [7], [10]. The signal-to-noise ratio
(SNR) is defined as the ratio of the maximum power of the
received signals to the power of noise in the time domain.
As a representative lower SNR case, 10 dB SNR is investi-
gated, which is regarded as quite lower SNR case denoted
in [9]. Figure 4 shows the results obtained by each process,
including those with and without matched filtering. In addi-
tion, Tables 2 and 3 show the quantitative error comparison
for cases with and without pre-ablation prior estimates. As
shown in the results, the matched-filter-based reconstruc-
tion produces the most robust reconstruction performance
with appropriate ablation dimensions even in the lower SNR
case.

4. Conclusion

This study introduced a noise-robust and accurate ablation
zone monitoring algorithm based on a prior DBIM quanti-

Table 2: Cumulative probability comparison for w and w/o
matched filter at 10 dB SNR for the case w/o prior estimate.

w/o prior estimate Errϵ∞ ≤ 2 Err∆ϵ ≤ 2 Errσs ≤ 0.1
w/o matched filter 44.4% 30.1% 43.5%
w matched filter 49.9% 42.2% 40.8%

Table 3: Cumulative probability comparison for w and w/o
matched filter at 10 dB SNR for the case w prior estimate.

w prior estimate Errϵ∞ ≤ 2 Err∆ϵ ≤ 2 Errσs ≤ 0.1
w/o matched filter 64.8% 56.7% 52.5%
w matched filter 92.2% 92.0% 66.9%

tative reconstruction scheme. In the proposed method, the
pre-ablation reconstruction is introduced as an initial esti-
mate of DBIM for the during ablation state to enhance the
convergence speed and reconstruction accuracy. Further-
more, we implemented the DBIM cost function to matched
filter processing for a more noise-robust estimate. The 2-
D FDTD numerical analysis with the MRI-derived phantom
demonstrated that our approach showed a notable improve-
ment in reconstruction accuracy with a relevant reconstruc-
tion speed, which maintains its performance even in a quite-
low-SNR scenario. Note that, the reconstruction accuracy
of the proposed method significantly depends the initial es-
timate of the pre-ablation state. To address the above con-
cerns, the hybrid use of the other methods, like [10] are
promising, by adding an independent a priori information
of ablation zone. A three-dimensional expansion and exper-
imental validation should be pursued further in the future.
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