

電気通信大学 情報理工学研究科 木寺 正平 第57回自動制御連合講演会 2014年 11月10日,群馬伊香保

発表のアウトライン

超分解能イメージング法(RPM法)

多重散乱波による不可視領域イメージング法

UWBレーダ	の応用例			
 UWBレーダ:高い距離分解能(cm級) ・粉塵・暗闇・強い逆光・見通し外等の環境下で適用可能 ・Laser range finder : 3次元的ビーム走査が必要 ・TOF カメラ(赤外線):精度が環境光・観測距離に強く依存 				
 ・ 救助・資源探査ロボットセンサ (劣悪な環境下での目標認識・障害物検知) ・ セキュリティセンサ (プライバシー保護+高い監視性能の両立) ⇒単独生活の老齢者・身障者監視 ・ 誘電体内部センシング技術 (非破壊検査・生体内部イメージング) 	壁 多重散乱 濃煙 透過波 人炎 瓦礫 Robot 「mage (mage (mage)			

システムモデル

発表のアウトライン

超分解能イメージング法(RPM法)

多重散乱波による不可視領域イメージング法

超分解能・超波長精度の実現

発表のアウトライン

超分解能イメージング法(RPM法)

多重散乱波による不可視領域イメージング法

3次元問題への拡張

発表のアウトライン

超分解能イメージング法(RPM法)

多重散乱波による不可視領域イメージング法

内部画像化への応用

誘電体内部UWBレーダ技術の応用例
 非侵襲生体内部計測:癌細胞検知・薬物,爆発物探知
 非破壊計測:橋・道路内部等の破損・腐食探知
 地中埋設物計測:地雷・水道管位置特定

深刻なインフラの老朽化

中央自動車道笹子トンネル天井崩落事故

乳癌イメージング(UWBレーダ)

各種計測技術の特徴		
超音波	 利点:低コスト・簡易・非電離 欠点:高周波減衰・弾性圧依存 	
X線	 利点:高分解能・高透過性 ケ点:被験者の被曝・3次元位置の把握困難 	
MRI	 利点:高分解能 欠点:高コスト・吸収減衰のみ・装置の大型化 	
THz 波	 利点:皮膚等の表層部の高分解能画像化が可能 ケ点:到達深度が浅い 	
Micro波 UWB	 利点:高い透過性・非電離放射線 癌細胞・薬物等の誘電・導電特性を利用可能 治療への可能性:温 熱療法 (Hyperthermia) 欠点:空間分解能が低い 	

拡張RPMによる高分解能画像化法

RPM(Range Points Migration, *Kidera et al.*, 2008)法の特徴: 距離点群の大域的分布を利用 ⇒高精度かつ安定な目標境界及び法線ベクトルの推定が可能

実験システム

- ・ダイポールアンテナ(垂直方向直線偏波)
- ·送受信信号生成: Vector Network Analyzer
- •周波数掃引幅:50MHz-5550 MHz (10MHz間隔)
- •有効帯域幅:2.0GHz(公称距離分解能:7.5cm)
- ・有効中心周波数:2GHz,波長:15cm
 ・目標を回転(3.6度刻みで101サンプル)
 反射波:Tx-Rx1での受信信号
 透過波:Tx-Rx2での受信信号

アンテナと目標回転台(本研究助成で一部購入)

高さ:250 mm

	波形補正なし	波形補正あり
比誘電率推定(相対誤差)	8.56(5.4%)	8.84(2.4%)
内部目標推定誤差RMS (波長:15cmで換算)	$2.30 \times 10^{-2} \lambda$ (3.45 mm)	$1.27 \times 10^{-2} \lambda$ (1.90 mm)

