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Abstract: Super-resolution time of arrival estimation methods have at-

tracted much attention in radar signal processing. Many studies have used

compressed sensing (CS)-based approaches to attain the super-resolution

property because they assume sparseness of temporal distribution of target

signal. However, this approach still suffer from accuracy degradation when

decomposing highly correlated signals in heavily noise-contaminated situa-

tions. To resolve this problem, this study introduces an enhanced CS method

by exploiting the sparseness of the signals in terms of both time and

frequency domains. Numerical simulation and comparison with results

obtained by conventional methods demonstrate that the proposed method

considerably enhances the reconstruction accuracy for multiple highly corre-

lated signals in lower signal-to-noise ratio situations.
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1 Introduction

Microwave radar systems are used for detection or ranging tools in a wide variety

of applications such as all-weather type terrain surface measurement and automo-

bile or indoor sensing radar in optically harsh environments. However, owing to

regulatory restrictions and hardware limitations, the frequency bands available for

radar are severely limited. Therefore, super-resolution time of arrival (TOA)

estimation approaches such as multiple signal classification (MUSIC) methods

[1] have been intensively investigated in many previous studies. The MUSIC

method exploits the orthogonality between the signal and noise eigenvector

decomposed by the correlation matrix and achieves a higher TOA resolution than

the Capon method or other TOA methods. However, the MUSIC method requires a

priori knowledge of the number of targets and involves loss of scattering coefficient

information [1]. Furthermore, these methods suffer from low resolution and

accuracy when separating highly correlated signals that are typically found in

multiple reflection echoes in radar applications. As another solution for this

problem, this study focuses on the compressed sensing (CS) approach [2]. CS is

widely recognized as a useful solution for underdetermined and ill-posed inverse

problems with constrained l1 norm minimization. It requires the simple assumption

that the spatial or temporal distribution of targets should be sparse compared with

the total sampled area [3]. There are intensive researches for CS-based signal

processing for radar applications, which achieved both a relatively lower sampling

rate and high-resolution property the TDOA (Time Difference of Arrival) discrim-

ination issues [4]. However, it has been reported that the original CS algorithm

suffers from inaccuracy in the case of strongly contaminated by noise, especially

when highly correlated target signals are also closely located within the theoretical

range resolution.

To retain the TOA accuracy and resolution under the situation that highly

correlated signals are mixed together in lower SNR levels, this study introduces

sparse regularization for the frequency domain in the original CS cost function.

This regularization term prevents an over-fitting to noise component in the

frequency domain, acting as a kind of a bandpass filter. Numerical simulation

demonstrates that the proposed method retains sufficient TOA resolution and

accuracy even under conditions of considerably lower SNR.

2 System model

It is assumed that the system is a monostatic radar system and that the temporal

distribution of multiple-point scatterers can be expressed as;

�ðtÞ ¼
XNT

i¼1
ai�ðt � �iÞ; ð1Þ

where �ð�Þ is Dirac’s delta function, ai and �i are the i-th scattering coefficient of

scatterers and time delay, respectively, and NT is the number of targets. The

receiving signal xðtÞ is expressed as;

xðtÞ ¼
Z 1

�1
�ðt � �Þhð�Þd� þ nðtÞ; ð2Þ
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where hðtÞ is the transmitting signal and nðtÞ is the thermal noise at the receiver. The

discrete form in Eq. (2) is expressed by

x ¼ �� þ n; ð3Þ
where � ¼ ½�ð�K�tÞ; � � � ; �ð0Þ; � � � ; �ðN�tÞ�T , x ¼ ½xð�tÞ; � � � ; xðN�tÞ�T , n ¼
½nð�tÞ; � � � ; nðN�tÞ�T , and

� ¼

hðK�tÞ � � � hð0Þ 0 � � � � � � 0

0 hðK�tÞ � � � hð0Þ 0 � � � 0

. .
.

0 � � � � � � 0 hðK�tÞ � � � hð0Þ

0
BBBBB@

1
CCCCCA; ð4Þ

where K and N denote the data lengths of the transmitting and receiving signals,

respectively. �t denotes the sampling interval. � is the observation matrix; and � is

the actual target distribution. In the case of typical TOA estimation by radar

systems, NT � N, is guranteed, that is, the sparse representation.

3 Conventional methods

Many studies have been performed aiming to achieve super-resolution TOA

estimation. Notably, the MUSIC method [1] exploits the orthogonality between

the signal and noise eigenvectors of the correlation matrix to retain super-resolution

property beyond the bandwidth. As an alternative approach, CS-based signal

decomposition has recently come under the spotlight. The CS-based method

achieves accurate signal reconstruction by introducing sparse regularization in

the time domain [3].

This is realized by calculating � solving the following formula;

�̂ ¼ argmin
�

ðkx ���k22 þ �k�k1Þ; ð5Þ

where λ is the regularization coefficient and the kvkp is lp norm and denotes

ðjv1jp þ � � � þ jvN jpÞ1p . While this method achieves super-resolution even for highly

correlated signals, and has some advantages relative to the MUSIC based ap-

proaches, it still suffers from inaccuracy or degraded resolution in considerably

lower SNR situations. This means that the regularization in the time domain is

insufficient for suppressing the over-fitting problem in such a case TOA estimation.

4 Proposed method

To overcome the problem described above, this study introduces frequency domain

based regularization into the original CS formulation. It should be noted that is that

the target signal should take a sparse distribution not only in the time domain but

also in the frequency domain by using much higher A/D conversion than the

upper limitation of the Nyquist frequency. In addition, when we have a priori

knowledge of of the maximum frequency of received signals, usually retrieved

from the effective bandwidth of the transmitting signal, a sufficient oversampling in

the time-domain can be obtained by using zero-padding process in the frequency

domain. Then, the dominant ratio of received signal in the frequency domain

considerably decreases, namely, a sparsity in the frequency domain is guaranteed.
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Focusing on this property, the proposed method introduces another regularization

term as

�̂ ¼ argmin
�

ðkx ���k22 þ �k�k1 þ �kF��k1Þ; ð6Þ

where F denotes the discrete Fourier transform matrix operator and β is the

regularization coefficient. Equation (6) constrains the degree of freedom of recon-

structed signals in terms of frequency and time domains. Thus, it prevents the

over-fitting to the noise component more strictly than the original CS formulation

in Eq. (5).

5 Performance evaluation using numerical simulation

This section describes the performance evaluation of each method through numer-

ical simulation. Here, the transmitting signal is a chirp-modulated pulse, expressed

as

hðtÞ ¼ Rðt;T Þ expð j�t2Þ; ð7Þ

Rðt;T Þ ¼

�cos �

�
t

� �
þ 1 ð0 � t < �Þ

1 ð� � t < T � �Þ
cos

�

�
ðt � ðT � �ÞÞ

� �
þ 1 ðT � � � t � T Þ

0 ðotherwiseÞ

8>>>>>><
>>>>>>:

; ð8Þ

where α is the chirp rate and T is the pulse length. � ¼ 1:5��0, where ��0 denotes

the time resolution determined by the effective frequency bandwidth of the trans-

mitting signal. Fig. 1 shows the assumed transmitting signal in the time and

frequency domains. Received signals are generated by Eq. 2 with complex white

Gaussian noises added as thermal noise nðtÞ. The SNR is defined as the time-

averaged power ratio between the signal and noise after applying a bandpass filter

determined by the bandwidth of the transmitting signal. The simulation parameters

are summarized as follows. The number of targets is 2, the temporal interval of two

targets is ��0=8, the sampling interval is ��0=16, the regularization coefficients are

empirically determined as � ¼ 0:5, � ¼ 0:01, and the pulse length is 16��0.

Fig. 2 shows the reconstruction outputs obtained by the original CS, and the

proposed methods, when the mean SNR is around 15 dB. Here, the interior

Fig. 1. Waveform of transmitted signal (upper) and Power spectrum of
transmitted signal (lower).
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algorithm is used for CS optimization problem, by considering the balance between

optimization accuracy and computational cost. The temporal interval is set as

��0=8. This figure demonstrates that all methods can decompose highly correlated

signals that are adjacent within the temporal resolution. While the original CS

methods fail to decompose the two targets, the proposed method maintains the

accuracy and resolution, where the two targets are separately decomposed with

actual locations.

The RMSE is investigated as reconstruction accuracy evaluation. The RMSE

denoted as ¥ and is defined as

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�̂ � �truek22

Ndata

s
; ð9Þ

where �̂ and �true denote the reconstructed and actual target responses. Ndata is the

data length of the target distribution. Fig. 3 plots the median ¥ versus the SNR for

each method, with the error bars denoting the interquartile range of ¥. The number

of Monte Carlo trials is 100 in this case. Fig. 3 demonstrates that the proposed

method retains more accurate target reconstruction for not only temporal distribu-

tion but also each scattered coefficient. Each calculation time is 17.2 sec for the

original CS method and 29.1 sec for the proposed method, respectively, in using an

Intel(R) Xeon(R) E5-1620 3.60GHz processor, where each time value is averaged

over 100 trials. The time required for the proposed method is 1.7 times greater than

that for the original CS method. The main reason for the higher computational cost

is that the proposed method introduces two regularization terms, leading to a

sluggish convergence to the optimal solution.

(a)

(b)

Fig. 2. Reconstruction results at SNR ¼ 15 dB, in the case of two
targets. (a): The original CS. (b): The proposed methods
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6 Conclusions

Exploiting the sparseness of a received signal spectrum, this study introduced a

sparse regularization term in the frequency and time domains to resolve the TOA

estimation issue. Numerical simulation results demonstrated that our proposed

method maintains the accuracy and super-resolution property even in lower SNR

situations, where the completely correlated signals are interfered within an interval

that is considerably smaller than the theoretical TOA resolution.

Fig. 3. Median and IQR of ¥ versus SNR for each method in the case
of two targets.
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