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Abstract— In this article, we present a novel method that
incorporates the range points migration (RPM) method, k-space
decomposition-based accurate, and noise-robust range extraction
filter for microwave or millimeter-wave (MMW) short-range
radar using a considerably lower fractional bandwidth signal.
The advantage for higher angular resolution in higher frequency
systems, such as MMW radar, has been implemented to the
incoherent-based RPM method, using the simple 1-D or 2-D
Fourier transform-based processing to maintain the imaging
accuracy in RPM processing for both the range and the angular
directions. As an additional advantage of our method, it also
offers data clustering in k-space, which can enhance the imaging
accuracy of the RPM method. The numerical and experimental
tests demonstrated that the proposed method offers numerous
advantages over the Capon-based super-resolution algorithm or
coherent-based imaging approaches.

Index Terms— Human recognition, millimeter-wave (MMW)
radar, range points (RPs) migration (RPM), 3-D radar imaging.

I. INTRODUCTION

CURRENTLY, there is a growing demand for highly
accurate 3-D imaging techniques for microwave or

millimeter-wave (MMW) radars assuming short-range object
detection or recognition. The advantages of these techniques
are particularly manifest in optically blurred environments,
such as dense fog, dusty air, or over-the-horizon or through-
the-wall situations. These advantages are also significant
in other applications, such as collision-avoidance systems
for self-driving vehicles, robotic sensors for human detec-
tion [1], [2], and security screening for concealed weapons
and explosives at stations or airports [3].

In particular, MMW radars provide a higher azimuth res-
olution compared with lower frequency-band radar systems.
Several studies have been conducted on the applications of
MMW radars, such as range and Doppler velocity estimation
and 3-D imaging. There are different approaches using the
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aforementioned background based on confocal and coherent
integration processing algorithms, such as synthetic aper-
ture radar (SAR) [4], multidimensional beamforming [5],
the Kirchhoff migration approaches [6], or range migration
algorithm (RMA) [7], [8], where a higher azimuth resolution is
obtained via a coherent process. However, most of the above-
mentioned methods incur high computational costs, especially
for generating high-resolution 3-D images. In addition, they
generate a speckle noise or grating lobe effect because of the
coherent integration process. Recently, sparsity-driven imaging
algorithms, such as the compressed sensing (CS) scheme,
have been introduced to reduce the volume of the observation
data without degrading the imaging quality or resolution
and avoid the grating lobe effect [9], assuming a sparse
array configuration. For example, it was demonstrated in [10]
that a considerable reduction in the processed data volume
can be accomplished using sparsity-driven change detection
and reconstruction by CS. Similarly, it was shown in [11]
that high-resolution 3-D volumetric imaging can be achieved
using fewer antenna elements assuming a multiple-input and
multiple-output sparse array. However, there are limitations
in CS-based reconstruction schemes, such as much higher
computational cost, comparing the beamforming-based meth-
ods [4]–[6], [8], because they are required to solve large-scale
optimization problems, especially for generating 3-D images.

A method called the RPM method, which exploits the
time delays observed at different sensor locations, has been
developed [12] to overcome the limitations in the abovemen-
tioned traditional approaches. Especially, each time delay in
RPM, the so-called RPs (defined as a set of sensor locations
and measured range), is efficiently converted into a reflection
point on the target boundary by a stochastic estimator with
a Gaussian kernel density based upon the direction-of-arrival
(DOA) estimator. A notable feature of RPM is that it can
be implemented with a simple algorithm because no con-
nection or tracking scheme is required for the RPs. It also
substantially addresses the association problem between the
range and the DOA in time-delay-based spatial interferom-
eters [13], [14]. In addition, it offers significant advantages
over coherent-based imaging methods, such as the ability to
avoid false images due to the sidelobe or grating lobe effect
caused by coherent processes, which have been demonstrated
in different applications [16], [17]. In particular, the study
in [17] has demonstrated that the RPM offers a highly accurate
3-D image, even for a realistic human shape target using a
large aperture observation model. It should be noted that the
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spatial resolution of RPM is basically determined by the range
resolution. Moreover, the cooperative use of super-resolution
filters (e.g., the Capon method [18] and CS filter [19]) is
promising for extracting highly accurate imaging features.
However, MMW radar systems offer considerably narrower
fractional bandwidths (i.e., a much lower range resolution),
thus making it difficult to achieve the full potential of RPM.
In contrast, coherent-based methods, such as the SAR or delay
and sum (DAS) methods, offer higher angular resolutions,
which are determined by the center wavelength and synthetic
aperture angle.

As a promising solution to overcome the drawbacks of
RPM, we, herein, introduce the k-space decomposition algo-
rithm for the preprocessing of RPM, following the basic idea
proposed in [21]. In this algorithm, the data received from
different antenna locations are converted into k-spaces for each
range gate via the Fourier transform. Responses from multiple
targets are then extracted in the k-space, which is equivalent
to angular-based decomposition. The notable feature of this
method is that all RPs are simultaneously clustered to each
part of the target, which considerably enhances the process-
ing speed and accuracy [14]. In addition, while traditional
super-resolution algorithms, such as the Capon method, require
much higher signal-to-noise (S/N) ratios, our proposed method
offers a noise-robust performance through the coherent k-space
decomposition process. It also enables us to take advantage
of both RPM and coherent-based imaging approaches, such
as the SAR, in which the spatial resolution is enhanced
by higher frequency systems and the grating lobe suppres-
sion and data association feature are maintained via RPM
processing.

Note that the real contribution of the proposed method
is that it could avoid ambiguous responses due to sparsely
sampled data in the coherent imaging scheme, and the far-field
approximation (planar incident wave) error due to k-space
decomposition or ambiguous response could also be avoided
by using the RPM, namely, the incoherent conversion process
from RP to its associated scattering center point. The results
of geometrical optics (GO) approximation based on 2-D and
3-D numerical analyses and experimental validation using an
X-band radar system demonstrate the superiority of the pro-
posed method over previous accurate RPM methods, such as
the Capon method [18] or the SAR-based imaging approaches,
in terms of spatial resolution, accuracy, computational cost,
and noise robustness.

II. OBSERVATION MODEL

Fig. 1 illustrates the observation model in the 2-D problem.
For simplicity, a monostatic radar system is assumed, that is,
a set of transmitting and receiving antennas is scanned along a
straight line or arranged as a linear array along the x-axis. The
location of the transmitting and receiving antennas is defined
as (X, 0). For each antenna location, the complex output of
the range extraction filter (e.g., the matched filter or the Capon
filter) is obtained as s(X, R). Here, R = ct/2 is defined
using a fast time t and the propagation velocity c in the air.
Discrete observation data, referred to as RPs, q i ≡ (Xi , Ri )
are extracted from the local maxima of complex envelope,

Fig. 1. Observation model in 2-D problem.

|s(X, R)|, with respect to R, where the subscript i denotes
the index number of the RPs.

III. CONVENTIONAL RADAR IMAGING METHODS

A. Coherent Integration (Confocal) Methods

Due to a higher frequency radar system, the coherent
integration-based imaging method, e.g, SAR or RMA, has a
distinctive advantage that higher carrier frequencies provide
higher azimuth resolutions. On the contrary, even for real
aperture or synthetic aperture scenarios, these methods require
dense spacing or sampling interval of observation points to
avoid false images due to the grating lobe. This spacing
or sampling interval must be less than half of the carrier
wavelength, namely, the Nyquist criteria should be satisfied.
In MMW radar systems, this limitation is more severe because
the sensor separation is in the order of millimeters; hence, they
require a large number of measurement positions to obtain a
high azimuth resolution, which introduces high costs and more
stringent hardware requirements.

B. Incoherent RP Conversion Methods

Incoherent imaging methods are proposed to address
the abovementioned difficulties, especially for exploiting
the reflection time delays observed at different observation
points [12], [15]. Time delays obtained by reflection responses
from the target are regarded as distances from the observation
point to the dominant scattering center point on the target
boundary. If we reconstruct each scattering center point on a
continuous target boundary at each observation point, we can
accurately reconstruct the target boundary. This approach is
recognized as a form of spatial interferometer or multilat-
eration. However, traditional multilateration schemes have
substantial problems of association among multiple measured
ranges. In particular, if a target has many scattering centers,
such as the human body, these problems become fatal, incur-
ring many false images.

The RPM algorithm was developed as a solution to the
inherent problem in traditional multilateration methods, with
its effectiveness demonstrated in several observation mod-
els [13], [16], [17]. RPM also adopts a time delay conversion
process (multilateration approach), that is, it accurately and
incoherently converts delays, the so-called RPs, into their
associated scattering centers. A notable feature of RPM is that
it avoids the connecting or tracking issues of RPs that arise
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Fig. 2. Conceptual figure of the original RPM method.

from numerous objects’ cases, by introducing a probabilis-
tic assessment using the Gaussian kernel density estimator.
Thus, it solves the association problem in multilateration. The
methodology of RPM is briefly introduced as follows. Here,
based on the GO approximation, one scattering center point on
a target boundary corresponding to one RP q (named MainRP)
should exist on a circle (ellipse in bistatic cases) with center
X and radius R. In order to extract the scattering center point,
this method calculates all the possible intersection points deter-
mined by other RPs (named SubRPs). Then, each scattering
center p̂(q i) corresponding to the MainRP is determined as

p̂(q i) = arg max
pint

i,k

∑
q j ∈Q

|s(q j )|exp

[
− D2d(q i , q j)

2

2σ 2
D

]

× exp

[
−

∥∥ pint
i, j − pint

i,k

∥∥2

2σ 2
r

]
(1)

where pint
i, j denotes the intersection point of two circles

determined by q i and ql , whereas σr and σD are constants
and denote correlation lengths in the Gaussian function-based
weighting. Here, σr should be determined considering the spa-
tial density of the accumulated intersection points, which could
be roughly estimated by the aperture size and the distance
from a sensor to a target. σD is chosen with reference to the
antenna separation in the array, which should be roughly set
to two or three times of sensor separations. More discussions
or explanations of these parameters are described in [12].
D2d(q i , q j) is defined as D2d(qi , q j ) ≡ |Xi − X j |, where Xi

and X j are associated with qi and q j , respectively. Q denotes a
set of SubRPs, which initially includes all possible RPs except
MainRP as qi . It has been demonstrated in several articles
that the RPM achieves accurate and high-speed imaging even
in elaborate target shapes, e.g., a realistic human body [17],
by being free from complicated connecting procedure of RPs.
Fig. 2 shows the relationships among pint

i, j , pint
i,k , and p̂(qi).

As in this figure, the optimal scattering center p̂(q i) is selected
from the number of intersection points pint

i, j with the highest
value of the evaluation function in the right term in (1).

Note that RPM is similar to the backprojection (BP) algo-
rithm in SAR processing, but it is not based on a coherent
process. Then, the RPM can suppress false images due to
the grating or sidelobe effect, and this feature enables us
to expand the aperture size with sparse sampling, which is
a distinct advantage over coherent-integration-based methods.
Furthermore, while coherent integration provides a higher

SNR with better integration gain, compared with incoherent
integration, the RPM maintains its noise-robust feature by
assessing the function in (1), which denotes the reliability of
each reconstructed scattered point, and then, Kidera et al. [12]
demonstrated that RPM has the same noise–robustness level
as the coherent integration scheme by exploiting the fea-
ture of (1). However, RPM loses the advantage of higher
center-frequency radar systems, such as the MMW radar,
because its azimuth resolution is not given by the center wave-
length but rather determined by the bandwidth (i.e., the range
resolution). In order to compensate for the abovementioned
disadvantage, super-resolution range estimation algorithms
(e.g., the Capon method [18] or CS [19]) are incorporated
into RPM to provide a sufficient azimuth resolution. However,
these methods require considerably high S/N ratios, higher
computational complexity, and wider bandwidth, which are
not always available in MMW radar systems. In order to
address this limitation, the Doppler-based range decomposi-
tion has been proposed [14], where multiple RPs within a
range resolution are effectively decomposed and clustered by
Doppler velocity discrimination. While the effectiveness of
this approach has been demonstrated in terms of accuracy and
lower complexity, it makes the assumption that the target is
not stationary.

IV. HIGH-FREQUENCY-ENHANCED RPM METHOD

Following the discussion in the previous section, we, herein,
propose a new k-space-based range decomposition method to
obtain a more accurate RPs profile for the RPM imaging
scheme, which is suitable for narrow-fractional-bandwidth
MMW radar systems.

A. k-Space Range Decomposition

We assume that there are multiple objects and that some
reflection responses are observed within the same range gate
(range resolution). In order to decompose the signals that
experienced interference, the proposed method converts the
received complex signal via the 1-D Fourier transform as
follows:

S(kx , R) =
∫

X∈�

s(X, R)e− jkx X d X (2)

where � denotes the aperture area and kx denotes the
wavenumber. Equation (2) is equivalent to the 1-D beamform-
ing assuming a planar incident wave, and the DOA is linked
through the relationship as θ = sin−1(kxλ/2π). If the DOA of
each target is clearly separated in the k-space, the data asso-
ciated with each target will be completely decomposed. Then,
in the next step, each local maximum of |S(kx, R)| denoted
as (k̃x , R̃) is extracted to satisfy the following condition:

∂|S(kx, R)|/∂kx = 0
∂|S(kx, R)|/∂ R = 0

}
(3)

where the mth local maximum of |S(kx, R)| is defined as
(k̃x,m , R̃m), (m = 1, . . . , NM ), where NM denotes the total
number of local maxima, corresponding to the number of
clusters in the RPs. Note that the proximity area around (k̃x, R̃)
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Fig. 3. Incorporation of the k-space deconvolution and the RPM method.

in the kx-space includes most of the data generated by each tar-
get. Then, the received data are decomposed (clustered) for
each (k̃x,m , R̃m) as follows:
s̃(X, R; k̃x,m , R̃m)

= 1

2π

∫
kx ∈�

W (kx , R; k̃x,m , R̃m)S(kx, R)e jkx X dkx (4)

where � is the kx -space region and W (kx , R; k̃x,m , R̃m)
denotes a spatial filter, such as raised cosine or the Gaussian
filter, in the space spanning (kx, R), with the center (k̃x, R̃).
Note that the filtering area of W (kx , R; k̃x,m , R̃m) should
be greater than the kx-space, which is determined by the
theoretical angular resolution. Finally, the RPs for the mth
clustered (decomposed) signal are extracted from the local
maxima, which satisfies

∂|s̃(X, R; k̃x,m , R̃m)|/∂ R = 0. (5)

The abovementioned local maxima are newly defined as the
mth clustered RPs qm,i ≡ (Xm,i , Rm,i ), and its set is defined
as

Qm ≡
Nm⋃
i=1

qm,i

where Nm denotes the total number of RPs included in Qm .
Note that the abovementioned decomposition scheme is valid
even if the Nyquist criterion is not satisfied, namely, a sparsely
sampled array configuration, because each RP qm,i is extracted
from the local maxima of the complex envelope of the decom-
posed responses s̃(X, R; k̃x,m , R̃m) in (5). This is a critical
advantage of the proposed scheme.

B. Incorporation With RPM

In order to enhance the accuracy and processing speed,
RPM, i.e., (1), should be applied to each cluster, whereas the
scattering center generated from the i th RP included in the
mth cluster as Qm should be calculated as follows:

p̂(qm,i ) = arg max
pint

m,i,l

∑
qm, j ∈Qm

|s(qm, j )|

× exp

[
− D2d(qm,i , qm, j )

2

2σ 2
x

]

× exp

[
−

∥∥ pint
m,i, j − pint

m,i,l

∥∥2

2σ 2
r

]
(6)

where pint
m,i,l denotes the point of intersection of the two circles

determined by qm,i and qm,l . Fig. 3 shows the schematic
figure of the proposed method, where the interfered data are
decomposed via the 1-D Fourier transform, and each filtered
data are processed to extract the RPs belonging to the same
target. Then, each set of clustered RP Qm is processed by the
RPM in parallel.

The proposed method can coherently decompose the range
data using the DOA difference based on the simple 1-D
Fourier transform, and it is then suitable for the MMW
radar systems that usually have a much smaller fractional
bandwidth compared with lower band ultrawideband (UWB)
radar systems. The main difference from the traditional SAR
or the Fourier-based RMA is that our method could avoid an
ambiguous response due to a phase uncertainty by converting
from RP to a scattering center. In addition, in the SAR or RMA
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Fig. 4. 2-D numerical observation geometry.

imaging scenario, we need to determine an appropriate region
of interest (ROI), the size of which significantly affects the
computational costs, especially in the full 3-D case; however,
the RPM-based method does not require the prior estimation
of the ROI and could reduce a redundant computational cost.
Another distinctive advantage of the proposed method is that
since it uses only Fourier transform analysis, its computational
complexity is considerably lower than that required by the
Capon or CS-based method.

V. PERFORMANCE EVALUATION IN 2-D PROBLEM

A. Numerical Test

1) Simulation Setup: In this section, we present a numerical
test for the proposed method. We adopted GO-approximation-
based data generation to deal with a large-scale problem that
concerns the wavelength of the MMW radar system. The effect
of multiple scattering among targets was not included, but the
interference effect from the reflected signals was considered.
GO is a promising forward solver based on high-frequency
approximation, in which the dominant propagation path is
determined by the law of reflection in optics [22]. In this
case, the transmitting signal forms a pulse-modulated sig-
nal, with a center frequency of 20 GHz and a bandwidth
of 0.2 GHz, which assumes the usual MMW radar system,
that is, a 24-GHz-band MMW radar. In this case, the cen-
ter wavelength and theoretical range resolutions are 15 and
750 mm, respectively. The set of transmitting and receiving
antennas is scanned along y = 0, with a scanning sample
interval of 5 mm, corresponding to one-third of the center
wavelength (15 mm). Fig. 4 shows the observation geometry
that contains three point-shaped targets. It should be noted that
the maximum difference in the radial range among these three
targets, that is, the line-of-sight distances, is less than 80 mm,
corresponding to 0.16 times the theoretical range resolution.

2) Results in Noise-Free Case: We first tested each method
in a noise-free environment to evaluate systematic errors only.
Fig. 5(a) shows the received signal s(X; R), after applying
the matched filter and its representation in k-space, denoted
as s(X, k). Fig. 5(b) demonstrates that each target response
in k-space (k, R) can be clearly discriminated, whereas they
are hardly separated in the data space (X, R). Note that the
raised cosine window is used as W (kx , R; k̃x,m , R̃m) in (4),
a period of which is 417 rad/m. As a comparison study

Fig. 5. (a) Received data s(X, R). (b) Received data in k-space s(k, R).

Fig. 6. Results of RP extraction in noise-free case. (a) Capon. (b) Proposed
method. Color scale in (a) denotes the magnitude of the Capon response.

for the existing accurate range estimation method, Fig. 6
shows the results after applying the Capon method [23] and
the proposed method. Here, we applied a simple frequency
averaging scheme, in which the number of averaging is opti-
mized in the Capon process to retain the resolution for highly
correlated signal decomposition [18]. As shown in Fig. 6(a),
there is a nonnegligible inaccuracy or limitation in the range
extraction because the bandwidth is too narrow to provide a
sufficient range resolution even while using the Capon method.
In contrast, the proposed method retains a high accuracy even
in this case and completely resolves the three target responses
for any antenna location. It is confirmed that there is an
inaccuracy in the proposed range extraction at both ends of
the aperture area because the received data are not continuous
between the start and end of the data along with the antenna
location, whereas the DFT assumes the continuity for the start
and end of the data.

For the quantitative analysis of the range estimation errors,
Errrange is introduced as the minimum distance between the
true and estimated ranges for each RP. The cumulative proba-
bilities to satisfy Errrange ≤ 10 mm are 98 % (46 / 47) for the
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Fig. 7. Image reconstruction results. (a) RPM with Capon-based decomposition. (b) RPM with k-space decomposition (proposed). (c) SAR.

Fig. 8. Results of RP extraction at S/N = 20 dB. (a) Capon. (b) Proposed
method. Color scale in (a) denotes the magnitude of the Capon response.

Capon method and 94 % (59/63) for the proposed method.
This result indicates that the proposed method significantly
increases the accuracy of the RPs using simple processing.
Note that these RPs can be clustered, which enhances the
accuracy and the processing speed of RPM imaging. Finally,
Fig. 7 shows the RPM results for each group of RPs and
the SAR image. σx = 100 mm and σr = 50 mm are set
in the RPM. This figure demonstrates that the RPM images
using both the Capon filter and the proposed method offer
almost correct scattering center points for all three targets
in the noise-free case. In addition, the SAR image could
decompose the target along the azimuth direction, and its
spatial resolution especially for range direction is considerably
low, which hardly offers an accurate target shape or location.

3) Results in Noisy Case: In this section, we investigate
the robustness of the proposed method for additive noise. The
Gaussian white noises were added to the received signal as
s(X, R). The S/N ratio is defined as the ratio of the peak
instantaneous signal power of the data to the average noise
power. In this article, we first discuss a higher S/N example
of an S/N ratio of 20 dB. Fig. 8 shows the results of the range

Fig. 9. Estimation results by RPM method at S/N = 20 dB. (a) Capon-based
decomposition. (b) Wavenumber-based decomposition (proposed).

extraction obtained for each method. It demonstrates that,
while the proposed method retains its performance, the Capon
filter could not provide good results in noisy situations. This
is because the Capon filter employs a transfer function for
data conversion (i.e., it is based on an inverse filter output),
which is very sensitive to additive noise. Fig. 9 also shows
the results of RPM imaging, in which RP extraction was
performed using the Capon method and the proposed method.
The figure shows that the RPs obtained using the proposed
method maintain high accuracy, whereas the RPM images
obtained using the Capon filter are considerably degraded
compared with those obtained in a noise-free situation. Note
that, while the RPM is based on the incoherent process,
the k-space coherent decomposition and its filtering process
considerably enhance the noise–robustness of the proposed
method, which is unavailable in the original RPM. As a lower
S/N situation, Fig. 10 shows the results of range extraction and
RPM imaging obtained from the proposed method at S/Ns
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Fig. 10. Results of RPM imaging using the proposed method at (a) S/N = 10
and (b) 0 dB.

TABLE I

CUMULATIVE PROBABILITY FOR RANGE EXTRACTION

ERRORS IN 2-D CASE

of 10 and 0 dB. As shown in Fig. 9, it deviates slightly
from the actual target positions because of strong noises,
especially in the case of S/N of 0 dB, but some points still
maintain its accuracy. Tables I and II show comparisons of the
quantitative error for each S/N ratio for the measured ranges
and RPM imaging, respectively. Note that the error in the
RPM image is denoted as ErrRPM, which is defined as the
minimum distance between the target boundary (expressed as
dense discrete points) and each point estimated using the RPM
method. In conclusion, the proposed method retains a certain
level of accuracy over an S/N of 10 dB, which is available in
the actual short-range radar scenario, as in [12] and [28].

4) Results in Sparsely Sampled Case: To reveal the
advantage of the proposed method, namely, the k-space
decomposition-based RPM imaging scheme, we added the test
case, assuming the sparse array configuration or scanning sam-
pled cases, including those obtained from the RMA method,
which is known as one of the high-speed radar imaging
techniques by exploiting the fast Fourier transform-based data
conversion [7], [20]. Fig. 11 shows the observation model,

TABLE II

CUMULATIVE PROBABILITIES FOR RPM IMAGING ERRORS WITH
DIFFERENT CRITERIA IN 2-D CASE

Fig. 11. 2-D numerical observation geometry, where observation points are
sparsely arranged.

where the scanning sample interval is set to 20 mm, which
is four times larger than that assumed in Section V-A1, and
the center wavelength as 15 mm. Fig. 12(a) and (b) shows
the imaging results obtained by the SAR method and the
RMA method using f-k migration-based acceleration, respec-
tively. The SAR shows some unnecessary responses along the
azimuth direction due to the phase uncertainty. Furthermore,
if we simply threshold the SAR images, there are many
unnecessary responses due to the sidelobe or grating lobe
effects. In the case of the RMA, compared with the SAR
image, the image spatial resolution or magnitudes degrade
due to the interpolation or filtering effect in the wavenumber
domain, particularly the right-hand side of the target. More-
over, we confirmed that the RMA suffered from an ambiguous
ghost response due to the coherent integration process if a
target is located at a large azimuth angle, which has not
occurred in the incoherent-based proposed method.

In addition, in the RMA image, the azimuth resolution and
accuracy significantly depend on the selected reference range
from the sensors to the targets. Consequently, if we deal with
multiple targets with different ranges, its accuracy or resolution
would not be guaranteed. Note that, while the RMA is much
faster than the general SAR process, the pixel resolution is
insufficient in this case; to obtain a more densely sampled
image, the processing time could be increased rapidly. How-
ever, Fig. 12(c) shows the imaging results obtained from the
proposed method, offering accurate target locations without
unnecessary responses, because the conversion process from
RPs to its associated scattering center is incoherent, while the
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Fig. 12. Image reconstruction results by each method, assuming the sparsely arranged observation model. Black dots denote the actual target shape and
positions. (a) SAR. (b) RMA. (c) Proposed.

Fig. 13. Experimental setup including two spherical targets with rotating table and the transmitting and receiving Fermi antennas. (a) Photograph.
(b) Geometrical arrangement. (c) Frequency power spectrum of reference signal.

k-space decomposition is based on coherent integration. This
point is also a significant advantage of the proposed method.
Note that σx = 400 mm and the period of the raised cosine
window as W (kx , R; k̃x,m , R̃m) as 417 rad/m are set, to fit
this sparse sampled case. The cumulative probabilities, for the
abovementioned results in Fig. 12(c), are 87 % (55/63) for
Errrange ≤ 10 mm and 94 % (34/ 36) for ErrRPM ≤ 50 mm,
respectively, and verify that its accuracy could be maintained
even in sparse sampled configuration. Furthermore, the com-
putational time for each method is 60 s for the SAR, 25 s
for the RMA, and 2 s for the proposed method, verifying the
effectiveness of the proposed method regarding computational
cost.

B. Experimental Test

This section presents the experimental validation for the pro-
posed method, using X-band UWB radar equipment. Fig. 13
shows the measurement setup using a UWB impulse radar
system (Sakura Tech Corp.), where the transmitting signal
has a center frequency of 8.5 GHz and a 1.5-GHz 10-dB
bandwidth; that is, the theoretical range resolution is 100 mm.
The transmitting and receiving broadband Fermi antennas are
arranged vertically, separated by 100 mm. Both the E- and
H-plane 3-dB beam widths of the Fermi antennas are 40◦.
Two spherical targets, each with a diameter of 100 mm, are
rotated by an azimuth table with an accuracy of 0.1◦. In order
to achieve a monostatic observation in different locations,

the two targets were rotated by 20◦, with 1◦ spacing, while
the transmitting and receiving antennas were fixed. 21 sampled
data points were processed in each method. The distance from
the radar unit to the center of the rotation table was 978 mm
and that from each target to the rotation center is 180 mm.
The maximum difference from the two targets to the antenna
locations is estimated to be within 60 mm. Fig. 14 shows the
received data after applying a matched filter and the extracted
RPs, as well as the RPM imaging results. The S/N ratio, in this
case, is approximately 25 dB. σx = 341 mm and σr = 10 mm
are set in the RPM. The figure shows that since the maximum
difference between the two targets and the antenna locations is
within the range resolution, matched filter (cross correlation)-
based signal processing cannot separate the two responses,
resulting in a considerable inaccuracy in the performance of
the RPM imaging scheme. Fig. 15 shows the results obtained
from the Capon filter, demonstrating that the Capon filter,
too, could not offer a clear separation between the two target
responses due to the insufficient S/N value or bandwidth,
similar to the discussion presented in Section V-A3. On the
contrary, Fig. 16 shows the results obtained from the k-space
decomposition and the decomposed responses obtained by
the proposed method. As shown in the figure, the two target
responses are clearly separated in the k-space in Fig. 16(a),
and each component can be reconstructed accurately via IDFT.
Fig. 17 shows the performance of RPM in RP extraction
and image reconstruction. It demonstrates that the proposed
method considerably enhances the performance and accuracy
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Fig. 14. Results obtained using the matched filter with the experimental data. (a) Response by filter. (b) True and extracted RPs. (c) Reconstructed scattering
centers (red solid circles) by the RPM. Color scale in (a) denotes the magnitude of the matched filter response.

Fig. 15. Results in using the Capon filter with the experimental data. (a) Response by filter. (b) True and extracted RPs. (c) Reconstructed scattering centers
(red solid circles) by the RPM. Color scale in (a) denotes the magnitude of the Capon response.

Fig. 16. (a) Responses in k-space with the experimental data. (b) and (c) Each decomposed response after applying k-space separation with the experimental
data.

of both range extraction and RPM imaging, noting that the
RPs are also correctly clustered by this method. Furthermore,
Fig. 18 shows the image reconstructed by the BP-based SAR
algorithm and shows that, while the target responses along
azimuth direction are clearly separated, the shape of the
target (spherical shape) is hardly recognized due to lower
range resolution or its principle. Notably, the local maxima
of SAR localize the front surface of each metallic sphere,
which corresponds to the dominant reflection point. Finally,
Table III summarizes the cumulative probabilities of errors in
range extraction and the accuracy of RPM imaging. This table
clearly denotes the superiority of the proposed method, which
remarkably enhances the number of accurately reconstructed
RPs and imaging points, even in experimental validations,
including realistic noise.

VI. EXTENTION TO 3-D PROBLEM

A. Methodology

This section describes the extension of the proposed method
to 3-D problems. Fig. 19 shows the observation model in a
3-D problem. Similar to the 2-D problem, a monostatic radar

system is assumed, but note that the proposed method would
be applicable to multistatic observation in principle. Assuming
a vertically arranged array or vertical plane scanning on the
y = 0 plane, the location of the transmitting and receiving
antenna is defined as (X, 0, Z), and the received data for each
antenna location is described as s(X, Z , R). Then, the received
data are converted into kx,z -space spanned by kx and kz as
follows:

S(kx, kz, R) =
∫

(X,Z)∈�

s(X, Z , R)e− j (kx X+kz Z)d Xd Z (7)

where � denotes the observation area. The decomposition in
the kx and kz spaces is equivalent to that in the elevation
and azimuth DOA domains. Next, the mth local maxima of
S(kx, kz, R) are extracted as (k̃x,m ,k̃z,m , R̃m)

∂|S(kx, kz, R)|/∂kx = 0
∂|S(kx, kz, R)|/∂kz = 0
∂|S(kx, kz, R)|/∂ R = 0

⎫⎬
⎭. (8)

Fig. 20 shows a schematic of the extension of the proposed
method to a 3-D problem.
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Fig. 17. Results in using the k-space decomposition (the proposed method)
with the experimental data. (a) True and extracted RPs, where blue and red
solid circles denote each clustered RPs. (b) Reconstruction image by the RPM,
where blue and red solid circles denote scattering center processed by a group
of clustered RPs in (b).

Fig. 18. Reconstructed image by the SAR algorithm.

TABLE III

CUMULATIVE PROBABILITIES FOR EACH ERROR IN EXPERIMENTAL TESTS

Similar to the 2-D approach, the proximity area around
(k̃x,m ,k̃z,m , R̃m) is extracted for data decomposition and clus-
tering. The mth clustered data are calculated via the inverse
2-D Fourier transform as follows:

s̃(X, Z , R; k̃x,m , k̃z,m, R̃m)

= 1

2π

∫
(kx ,kz )∈�

W (kx , kz, R; k̃x,m , k̃z,m, R̃m)

× S(kx, kz, R)e j (kx X+kz Z)dkxdkz (9)

Fig. 19. Observation model in 3-D problem, assuming simplified human body
target. Purple dots denote the 2-D array location.

Fig. 20. 2-D k-space decomposition in the 3-D model.

where W (kx , kz, R; k̃x,m , k̃z,m, R̃m) denotes the window func-
tion as for the 2-D kx and kz space, not for R, with the center
(k̃x,m , k̃z,m , R̃m). For each cluster, the RPs are extracted from
the local maxima of |s̃(X, Z , R; k̃x,m , k̃z,m, R̃m)|, Finally, RPM
for the 3-D version is applied to each cluster to extract the
scattering center corresponding to the RP qm,i as follows:
p̂(qm,i ) = arg max

pint
m,i,l,n∈Pm,i

∑
qm, j ,qm,k ∈Qm

g(qm,i ; qm, j , qm,k)

× exp

[
−

∥∥ pint
m,i, j,k − pint

m,i,l,n

∥∥2

2σ 2
r

]
(10)

where pint
m,i,l,n denotes the intersection point of the spheres

generated by qm,i , qm,l , and qm,n , Pm,i is a set, including the
those intersection points. g(qm,i ; qm, j , qm,k) is defined as

g(qm,i ; qm, j , qm,k) = |s(qm, j )| exp

[
− D3d(qm,i ; qm, j )

2

2σ 2
D

]

+ |s(qm,k)| exp

[
− D3d(qm,i ; qm,k)

2

2σ 2
D

]
(11)

where D3d(qm,i ; qm, j ) denotes the 3-D Euclidean distance
between the antenna locations, denoted by qm,i and qm, j . Note
that the abovementioned process can be implemented by a 2-D
fast Fourier transform (FFT) algorithm.

B. Numerical Simulation Test

1) Simulation Model: In this section, we present the range
extraction and imaging performances for the 3-D problem.
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Fig. 21. Results of RP extractions in a 3-D model without noise. (a) Capon.
(b) Proposed. Black hollow circles denote the true RPs, red solid circles in
(a) denote the extracted RPs by Capon, and colored solid circles in (b) denote
the extracted RPs by the proposed method, where each color denotes each
cluster. Color scale in (a) denotes the magnitude of the Capon response.

We assume a simple human body model, which is expressed
as an aggregation of 11 ellipsoids corresponding to the head,
upper and lower torsos, arms, and legs, as shown in Fig. 19.
This simplified target model enables us to assess the imaging
accuracy more reliably and quantitatively. The transmitting
signal forms a pulse-modulated signal, with a center frequency
of 20 GHz and a bandwidth of 3.0 GHz, where the cen-
ter wavelength and theoretical range resolutions are 15 and
50 mm, respectively. The 2-D (11 × 17) array with 7.5-mm
(a half of center wavelength) equal spacing is located on
the y = 0 plane, which consists of 11 antennas along the
x-axis and 17 antennas along the z-axis. The received data are
generated by GO, that is, the interferences among a number of
reflections from multiple objects are considered in generating
data.

2) Results: First, we will discuss the noise-free case. Fig. 21
shows the range extraction results obtained by the Capon and
the proposed method. Note that, to suppress the sidelobe effect,
the window function in the 2-D k-space is the raised cosine
function with the width along the kx axis of 0.775 rad/m
and the width along the kz axis of 1.21 rad/m, which almost
corresponds to a size of spatial resolution in k-space. As shown
in this figure, a number of reflection RPs are included in one
range resolution (50 mm); then, a super-resolution technique,
such as the Capon method, must be implemented. Since we
assumed 11 ellipsoid targets, it is expected that each antenna
will receive at least 11 RPs; however, the Capon method could
not obtain a sufficient number of RPs at each location (ideally
11 points) because of its insufficient range resolution, that
is, the Capon method has missed a significant RP for the

Fig. 22. Results of RPM imaging in a 3-D model without noise. (a) Capon.
(b) Proposed. Red solid circles in (a) denote the reconstructed scattering center
points by Capon via RPM. Colored solid circles in (b) denote the reconstructed
scattering center points by the proposed method via RPM, where each color
denotes each cluster.

RPM imaging. In contrast, the proposed method obtained over
ten RPs with high accuracy by resolving the RPs using k-space
decomposition. The number of RPs that satisfies e ≤ 10 mm
criterion is 678 for the Capon method (cumulative probability:
100 %) and 2248 for the proposed method (cumulative prob-
ability: 98 %). Note that the actual total number of RPs and
scattering points is 2057 in this case. These results demonstrate
that the proposed method remarkably enhances the number
of RPs with high accuracy, which is much closer to the
ideal number (2057). Finally, Fig. 22 shows the reconstruction
results obtained by the RPM method, using the Capon method
and the proposed range decomposition. By increasing the
number of accurate RPs, the accuracy and imaging area of
the RPM images are also enhanced. The 3-D image of the
RPM offers a limited area of each ellipsoidal, and this is
because each ellipsoid object has a smooth surface, and its
surface specular reflection is dominant for each received signal
s(X, Z , R). However, the literature [17] demonstrated that the
RPM offers a more informative image assuming an elaborate
target, such as a realistic human body, even in using the Capon
method. Then, if more accurate range estimation is achieved
by the proposed method, it is well expected that its RPM image
could express a larger area of a human body, namely, a more
informative image, even using a lower fractional bandwidth
radar system. The time required for computation by RPM
with the Capon filter and the proposed method is 3.4 × 104

s and 20 s, respectively, on a computer with an Intel Xeon
E5-2680 v4 2.40-GHz CPU and 128-GB RAM. The proposed
method requires a remarkably shorter computational time
because it offers RP clustering through k-space decomposition,
which reduces the number of RPs input into the RPM. Note
that, if more acceleration is needed, one could implement
the extended algorithm in [17]. In addition, we compared the
performance of the proposed method with that of the SAR
imaging approach. Fig. 23 shows an image of the SAR, where
the BP algorithm was applied to complex received data after
matched filtering. The figure shows that, while SAR imaging
could separate the three target responses along the azimuth
direction, it offers considerably blurred images along the range
direction because of the lower range resolution. Furthermore,
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Fig. 23. Reconstruction images by the SAR method without noise. (a) Cross-
sectional image at y = 1000 mm. (b) Cross-sectional image at x = 0 mm.

Fig. 24. Results of RP extractions in the 3-D model at S/N = 20 dB.
(a) Capon. (b) Proposed. Black hollow circles denote the true RPs, and red
solid circles in (a) denote the extracted RPs by Capon. Colored solid circles
in (b) denote the extracted RPs by the proposed method, where each color
denotes each cluster. Color scale in (a) denotes the magnitude of the Capon
response.

even if we implemented the matrix operation-based accel-
eration scheme, the computational time required to run the
DAS imaging algorithm is 180 s to obtain one cross-sectional
image with a 3-mm pixel using the same processor described
before. Also note that, in DAS image processing, computation
time could be further reduced. If sufficient RAM is available
and the region of interest and element positions are invariant
in the sequential measurement, the computation could be
reduced by separating the computation of the image area
restoration, including the transfer function from each pixel
and element, andmatrix multiplication with updated measured
data. We have confirmed that, using the same processor and
amount of RAM, the computation time required to obtain
a single cross-sectional image (Fig. 23) can be reduced to
approximately 18 s by applying the abovementioned separa-
tion process. However, we also confirmed that applying the

Fig. 25. Results of RPM imaging in the 3-D model at S/N = 20 dB.
(a) Capon. (b) Proposed. Red solid circles in (a) denote the reconstructed
scattering center points by Capon via RPM. Colored solid circles in (b) denote
the reconstructed scattering center points by the proposed method via RPM,
where each color denotes each cluster.

TABLE IV

CUMULATIVE PROBABILITY FOR RPM IMAGING ERRORS IN 3-D CASE

abovementioned approach to obtain the full 3-D volumetric
image is not efficient because it consumes an excessive amount
of RAM. For example, for a region of interest of −1000
mm ≤ x ≤ 1000 mm, 0 mm ≤ y ≤ 2000 mm, 0 mm ≤
z ≤ 2000 mm with 3-mm spacing, more than 128-GB RAM
is required. In addition, if we do not apply the abovementioned
process, it has been also confirmed that the total computation
time required to obtain the abovementioned volumetric image
is more than 1.2 × 105 s, which is much longer than the
amount of time required by the proposed method.

3) Impact of Noise: Next, we assessed the noise robustness
of each method by investigating their performance on data with
additive noise, in which the Gaussian white noise was added
to the received signal as s(X, Z , R). Similar to the 2-D model,
we investigated a mean S/N ratio of 20 dB. Fig. 24 shows the
RP extraction results obtained using the Capon and the pro-
posed method. While the proposed method maintains almost
the same results as the noiseless case, the Capon method
seriously suffers from inaccuracies in range extraction because
of the additive noise. Consequently, the final reconstructed
images obtained by RPM indicated that Capon-based range
extraction could not offer a meaningful image, whereas the
proposed method provides almost the same results as in the
noiseless case, as shown in Fig. 25, namely, the proposed
method has a significant advantage for the noise-robust feature.
Finally, Tables IV and V summarize the quantitative results
for the noise-free and noisy situations in terms of the errors
obtained by each method for range extraction and RPM
imaging results. It can be concluded from the abovemen-
tioned results that the proposed method maintains remarkable
noise robustness compared with the Capon method because it
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TABLE V

CUMULATIVE PROBABILITY FOR RPM IMAGING ERRORS IN 3-D CASE

coherently integrates the received data along with the sensor
locations, which significantly suppresses the random noise
component.

VII. CONCLUSION

In this article, we introduced a new k-space decomposition
preprocessing method for highly accurate RPM imaging for
MMW short-range radar systems. The proposed method has
numerous advantages, including higher azimuth and range res-
olutions and noise robustness, achieved through coherent pre-
processing. In addition, the method offers prior RP clustering,
which enhances the accuracy and processing speed of RPM
imaging. We demonstrated through 2-D and experimental val-
idations via an X-band radar system that the proposed method
maintains highly accurate range measurements compared with
the already existing Capon technique, which is much sensitive
to additive noise. Finally, a 3-D observation model, which
represents a simplified human body detection scenario, showed
that the proposed method offers high-accuracy imaging results,
even under severe conditions, such as narrowband scenarios.

The real contribution of the proposed method is that it could
eliminate the shortcomings in both coherent and incoherent
imaging approaches. The proposed method avoids ambiguous
responses due to sparsely sampled data in the coherent imaging
scheme because the imaging procedure itself is based on
the incoherent process via the RPM algorithm. Furthermore,
by introducing the k-space decomposition scheme, the pro-
posed method could resolve the problem in the incoherent
RPM process that it requires wider frequency bandwidth and
does not obtain the advantage of the higher frequency radar
system regarding azimuth resolution. It should be also noted
that, while the k-space decomposition is implemented via the
FFT scheme, the proposed method could avoid the far-field
approximation (planar incident wave) error or ambiguous
response. This is because the incoherent conversion from RP
to its associated scattering center point assumes a near-field
imaging scenario, which is free from the ambiguity due to
phase uncertainty. Note that, while there is a possibility for
generating a more accurate image by combining the Capon and
the k-space decomposition in the RPM scheme, the accuracy
for range estimation by the Capon highly depends on the SNR
level, and the balance between accuracy and noise–robustness
should be considered in regard to the practical situation.

Finally, we should mention the limitations of this method in
considering realistic scenarios. First, the RPM imaging scheme
relies on the geometric optics approximation to determine the
dominant scattering center point on the target boundary using
the discrete RPs data, namely, the roughness of the target

surface should be much greater than the system center wave-
length. Nonetheless, many studies have described its relevance
and limitations, such as assuming a realistic human body case
in [17]. Second, our proposed method does not consider the
multiple reflection components, which would generate a ghost
image, because the k-space data include some responses from
multiple reflections, and we do not apply any suppression
method here. These problems are common in other imaging
schemes, such as SAR, RMA, or RPM, and are far beyond
the topic under investigation in this study. Some promising
solutions to deal with the multiple scattering components do
exist, such as [24], [25], where the ghost images of multiple
reflections are converted to real images using appropriate
processing. However, those algorithms would incur more com-
putational complexity, and it is our future task to incorporate
these algorithms with less complexity.
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