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PAPER
Accurate Doppler Velocity Estimation by Iterative WKD Algorithm
for Pulse-Doppler Radar

Takumi HAYASHI†, Takeru ANDO†, Nonmembers, and Shouhei KIDERA†a), Senior Member

SUMMARY In this study, we propose an accurate range-Doppler anal-
ysis algorithm for moving multiple objects in a short range using mi-
crowave (including millimeter wave) radars. As a promising Doppler anal-
ysis for the above model, we previously proposed a weighted kernel density
(WKD) estimator algorithm, which overcomes several disadvantages in co-
herent integration based methods, such as a trade-off between temporal and
frequency resolutions. However, in handling multiple objects like human
body, it is difficult to maintain the accuracy of the Doppler velocity estima-
tion, because there are multiple responses from multiple parts of object, like
human body, incurring inaccuracies in range or Doppler velocity estima-
tion. To address this issue, we propose an iterative algorithm by exploiting
an output of the WKD algorithm. Three-dimensional numerical analysis,
assuming a human body model in motion, and experimental tests demon-
strate that the proposed algorithm provides more accurate, high-resolution
range-Doppler velocity profiles than the original WKD algorithm, without
increasing computational complexity. Particularly, the simulation results
show that the cumulative probabilities of range errors within 10 mm, and
Doppler velocity error within 0.1 m/s are enhanced from 34% (by the for-
mer method) to 63% (by the proposed method).
key words: microwave, millimeter wave radar, Pulse Doppler radar,
Doppler velocity estimation, weighted kernel density estimator (WKD),
Radar signal processing

1. Introduction

Microwave radars, including millimeter-wave band, are
more robust than optical sensors and work under smog,
dense fog, dusty, or other optically challenging conditions.
Thus, they are applicable to various object recognition or lo-
calization applications, such as human body recognition for
collision avoidance required in self-driving scene, or for sur-
vivor detection in rescue scene, which should be applicable
in the above optically blurred situations. However, short-
range radar imaging for multiple complex objects, such as
the human body, is still challenging due to a limited aperture
size or strong interference caused by numerous responses
from an assumed object [1]. Recently, micro-Doppler (MD)
analyses for classifying motions of the human body, such
as vibrating, rotating, and coning have been intensively in-
vestigated for search-and-rescue, security, or surveillance
applications [2], [3], using various machine learning based
approaches [5]–[7]. The authors of [8] exploited the enve-
lope of a short-time Fourier transform (STFT) spectrogram
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for arm motion recognition, whereas the authors of [9] fo-
cused on MD for road pedestrian detection. The authors of
[10] attempted to eliminate micro-motion interference. The
method in [11] recognized the total energy expenditure from
MD data during walking and running activities.

Several studies have been conducted on Doppler spec-
trum analysis, including conventional Fourier-transform-
based methods, such as the STFT [12]–[14], and
the Fourier–Bessel transform [15], and other coherent
integration-based methods such as the Wigner–Ville distri-
bution [16], and the pseudo Wigner distribution (SPWD)
[17]. However, coherent integration effects, enhancing ve-
locity resolution or noise reduction ability, are not avail-
able in handling high range resolution outputs by Capon or
compressed sensing (CS) filters because coherent methods
require multiple reflection pulses to be recorded within a
range-resolution cell along with a coherent processing inter-
val (CPI). Further, an range walk (RW) effect would also de-
grade an available Doppler velocity resolution due to a lim-
ited CPI. Here, the RW effect is defined as a case where a tar-
get moves a distance greater than a range resolution of pulse,
and a number of pulse hits within the same range resolu-
tion cell would be limited, and then, incurring lower velocity
resolution. Numerous methods have been employed to ad-
dress the RW effect, such as the Hough transform [18], [19],
Radon-Fourier transform [20]–[22], and keystone transform
[23], [24]. Discrete polynomial-phase transform [25] is an-
other promising method for detecting fast-moving objects.
However, the above methods assume that the Doppler ve-
locity is invariant over the integration time, which is not ap-
plicable in scenarios with longer pulse repetition intervals
(PRIs).

As a solution to the aforementioned problem, Setsu et
al. proposed a weighted kernel density estimator (WKD)-
based time-of-flight (TOF) point, called range-τ point, con-
version algorithm [26], in which each range-τ point is con-
verted into its corresponding range-Doppler velocity point.
In the WKD algorithm, a Doppler-associated range-τ point
is observed for each pulse hit, which means that the tempo-
ral resolution is shortened to a PRI. This technique is most
advantageous when incorporated with a CS based range ex-
traction filter, where both the super-resolution range and
Doppler velocity resolutions are available [26]. This in-
coherent processing can be implemented on less complex
hardware than coherent processing. However, when dealing
with data contained by many reflections, the WKD methods’
accuracy remains insufficient.
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To address the aforementioned problem, we newly in-
troduce an iterative data-selection WKD method, which ex-
ploits the WKD’s unique feature of one-to-one correspon-
dence to a range-Doppler velocity point in each pulse hit.
The basis of this method is the data selection in the WKD
scheme; specifically, the range-τ point associated with a
specific part of the human body, such as the arm, must be
processed using only the subset of the range-τ points origi-
nating from the same part (arm) of the body. However, un-
necessary range-τ points originating from other parts of the
body, such as the leg or torso, should be eliminated. The
range-τ points can be clustered using the weighting func-
tion of the Doppler velocity by using the above property
in the proposed algorithm. While the basic concept of this
method was reported in [27], it was based on a hard clus-
tering scheme, and only simulation tests were investigated.
Furthermore, our iterative data-selection process can elim-
inate unnecessary data. Note that, the proposed method
enables the elimination of unnecessary range-τ points that
are associated with inappropriate Doppler velocities, which
contribute to further improvements in the Doppler velocity
estimations. Because the proposed updating algorithm is
simple and avoids hard-clustering schemes as in [27], an
unworkable increase in computational complexity can be
avoided. Note that, the algorithm proposed in this paper can
be applied widely to not only human recognition but also
more general Doppler velocity estimation scenarios, where
a trade-off between Doppler velocity and temporal resolu-
tions, or unambiguous velocity range would be fatal.

Both geometrical optics approximations and finite-
difference time domain (FDTD) based 3-D numerical tests,
assuming a 3-D human-body imaging scenario, demonstrate
that the proposed algorithm significantly improves the ac-
curacy of Doppler velocity estimations, and provides more
informative radar images with an image integration scheme
along slow time. In addition, two types of experimental val-
idations using three metallic object with a rotation motion
with X-band radar and a real human walking motion with
FMCW millimeter wave radar, also show that our proposed
method significantly enhances the accuracy of the Doppler
velocity by eliminating the redundant responses.

This paper is organized as follows. Section 2 defines
the observation model for the short-range scenario, which is
assumed for human-body recognition, in which the range-
τ points are introduced. Section 3 introduces the original
WKD algorithm and the proposed iterative algorithm that
uses Doppler-velocity-based data selection. The numeri-
cal validations, using both geometrical optics (GO) approx-
imations and the FDTD forward solvers, are presented in
Sect. 4. In Sect. 5, two experimental tests, assuming simple
metallic spheres and a real human with different walking
motions, are presented, which is one of the main updates
from [27]. Final part in Sect. 5, we discuss on the qual-
itative comparison to the existing coherent based Doppler
analysis approach, in terms of the PRI, bandwidth, or noise-
robustness. The conclusions and other discussions are pre-
sented in Sect. 6.

2. Observation Model

Figure 1 shows the observation model. A single set of trans-
mitting and receiving antennas is assumed, with no require-
ment for directivity. We assume a pulse-Doppler radar sys-
tem using multiple pulse sequences with a fixed PRI, where
a sinusoidal signal is modulated by a pulse function, such as
a Gaussian function. The electric field is recorded as s(t, τ),
where t denotes the fast time, and τ denotes the slow-time
given by an integer multiple of the PRI as TPRI. Here, s(t, τ)
is redefined as s(R, τ) with R = ct/2 using the radio-wave
speed c. τ denotes the slow-time given by an integer multi-
ple of the PRI. Assuming a number of isolated targets, the
recorded signal s(R, τ) is expressed as:

s(R, τ) =

NT∑
k=1

Ak sref(R − Rk(τ)) (1)

where Ak denotes a reflection amplitude of k-th target and
sref(R) denotes a reference signal, usually set to transmittal
waveform. Rk(τ) is determined by the round-trip distance
(delay) propagating from the transmitter to the receiver via
each target’s scattering center point at the slow time τi.

To reconstruct the scattering center point or its asso-
ciated Doppler velocity for each set of range and element
location, we introduce the range-τ point as qi, j ≡ (Ri, j, τi) at
the slow-time τi = iTPRI. Here the subscript i denotes the
index number of pulse hit at τi, and the subscript j denotes
the index number of the extracted range-τ point at each τi.
These approaches have been widely applied in several stud-
ies [26], [28], [30]. To extract the above range point, we
first apply the filter, such as a matched filter or the CS filter
[26], where the local peak of the filter response would ex-
press the distance from the sensor to each target Rk. We now
define the output of the filter as s̃(R, τ) for each received sig-
nal s(R, τ). Then, the range point is extracted from the local
maximum of |s̃(R, τ)| along the R direction as:

Fig. 1 Observation model.
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∂|s̃(R, τ)|
∂R

= 0

|s̃(R, τ)| ≥ αmax
R,τ
|s̃(R, τ)|

 , (2)

where α denotes the threshold parameter.

3. Methods

3.1 Original WKD Algorithm

There are various studies on time-Doppler frequency anal-
ysis, but they have not adequately addressed the inherent
trade-off between the temporal and frequency (Doppler ve-
locity) resolutions, caused by the coherent integration proce-
dure. In addition, the RW effect worsens under the coherent
integration scheme when dealing with large fractional band-
widths, e.g., UWB signals or responses by Capon or CS fil-
ters, because each pulse moves beyond the range-resolution
cell in PRI.

Setsu et al. proposed a new method to address the above
problem [26]. The solution exploits WKD-based range-τ
points conversion. This section briefly explains the method-
ology of the method [26] as follows. This method uses the
principle that the inclinations of adjacent range-τ points cor-
respond to the Doppler velocities. The optimal Doppler ve-
locity for qi, j is determined by maximizing the following
probabilistic distribution as modeled by weighted Gaussian
kernels:

v̂d(qi, j) = arg max
vd

∑
k,l

exp
(
−

∣∣∣|s̃(qi, j)| − |s̃(qk,l)|
∣∣∣2

2σ2
s

)

× exp
(
−
|τi − τk |

2

2σ2
τ

)
exp

(
−
|vd − ṽd(qi, j, qk,l)|2

2σ2
vd

)
, (3)

where vd is the valuable of the Doppler velocity, |s̃(qi, j)| is
the signal strength of the filter output at qi, j and ṽd(qi, j, qk,l)
is defined as ṽd(qi, j, qk,l) ≡ (Ri, j − Rk,l)/(τi − τk). σs, στ,
andσvd are empirically determined constants, and their roles
are detailed in [26]. These parameters can be determined
by considering the assumed PRI or velocity variations. Be-
cause στ denotes the correlation length for the slow-time
direction, it must be set as a couple of PRIs to deal with
the temporal variation of the target. The weighting term

exp
(
−

∣∣∣vd−ṽd(qi, j,qk,l)
∣∣∣2

2σ2
vd

)
indicates that the Doppler velocity, cal-

culated by the neighboring range-τ points of qi, j, should
have more weights in Eq. (3). Further, σvd must be set
smaller than the required Doppler velocity resolution. The

weighting term exp
(
−

∣∣∣|s̃(qi, j)|−|s̃(qk,l)|
∣∣∣2

2σ2
s

)
also indicates that, if

the range-τ points belong to the same target, their signal
strengths would be similar along the neighbouring PRIs.
Further explanations of these parameters or sensitivity stud-
ies have been described in [26].

Note that, this method does not require any connecting
or tracking procedures for the range-τ points. However, in

dealing with many scatterers’ object, such as humans, the
original WKD would suffer from inaccuracies. This is be-
cause Eq. (3) is calculated using all possible combinations
of range-τ points included in Qall for each qi, j, where Qall
is defined as a set that contains all measured range-τ points.
The above process is totally redundant, and the subset of
range-τ points should be adaptively changed according to
qi, j. For example, the range-τ point associated with a hu-
man arm should be assessed using only the subset of range-τ
points that originates from the human arm, and not by using
range-τ points from the leg or torso. From the above dis-
cussion, prior data selection of range-τ points is required to
achieve more accurate Doppler velocity estimations.

3.2 Iterative Data Selection Based WKD Algorithm

This section describes the proposed methodology. As de-
scribed in the previous section, prior data selection of range-
τ points is key for accuracy improvement in the WKD
method. Thus, we introduce iterative data selection algo-
rithm, namely soft-clustering of range-τ points. To avoid
parameter dependency or a complex hard-clustering algo-
rithm issued in [27], the proposed method introduces a new
weighting function to Eq. (3). Figure 2 shows the schematic
diagram of the proposed method. Here, the weight for
each range-τ point is recursively updated using the pre-
vious Doppler velocity estimation results. This approach
is achieved by the notable feature that the range-τ points
and velocity-τ points are solely associated, namely, qi, j and
v̂d(qi, j) have a one-to-one correspondence.

As described in the previous subsection, the original
WKD algorithm determines v̂d(qi, j) by calculating all possi-
ble range-τ points (called SubRPs) for the Doppler velocity
at a focused range-τ point qi, j (called MainRP). The correct
clustering should occur when the Main RP arises from a spe-
cific scatterer (e.g., the right arm), then the subset of SubRPs

Fig. 2 Schematic procedures of the proposed method, where range-τ
points associated with each part of human body is selected and processed
in the WKD algorithm, iteratively.
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should also be associated with the same scatterer (e.g., right
arm). Then, the selection of a range-τ points should be per-
formed, so that the Main RP and SubRps are clustered into
the same group. However, this selection scheme should be
done without any prior knowledge of each Doppler velocity
value. We use an initial estimation of the Doppler velocities
as each qi calculated in Eq. (3).

In the proposed method, the Doppler velocities are then
sequentially updated as follows:

v̂(m+1)
d (qi, j)=arg max

vd

∑
qk,l∈Q

(m)
i, j

exp
(
−

∣∣∣|s̃(qi, j)| − |s̃(qk,l)|
∣∣∣2

2σ2
s

)

× exp
(
−

∣∣∣τi − τk

∣∣∣2
2σ2

τ

)
exp

(
−

∣∣∣v(m)
d (qi, j) − v

(m)
d (qk,l)

∣∣∣2
2σ2

vc

)

× exp
(
−

∣∣∣vd − ṽd(qi, j, qk,l)
∣∣∣2

2σ2
vd

)
, (4)

where v̂(m)
d (qi, j) denotes the Doppler estimation result of qi, j

in the m-th iteration step. σvc is a constant, which deter-
mines the selection criteria in terms of the Doppler velocity.
Compared with the original WKD, as in Eq. (3), the Doppler
velocity associated qi, j is determined from the selected sub-
set Q(m)

i, j , not from all possible range-τ points. Here, a subset

of range-τ points in the m-th iteration step is defined as Q(m)
i, j

for each qi, j, which is iteratively updated as:

Q
(m)
i, j ≡

{
qk,l

∣∣∣∣∣∣F(m−1)
vd

(qk,l) ≥ ξmaxqs,t

F(m−1)
vd

(qs,t)
}
, (5)

where the function F(m−1)
vd (qk,l) is defined as the maximum

value of the function inside the argmax in Eq. (4) about qk,l
at the m − 1 iteration step. ξ is a zero-dimensional con-
stant threshold determined from statistical characteristics
from all Fvd samples, such as Otsu’s discrimination anal-
ysis [29]. Specifically, the selected subset Q(m)

i, j would ex-
clude the range-τ points with lower Fvd , which is commonly
regarded as an outlier or random noise component. Fur-

thermore, the weight of exp
(
−

∣∣∣v(m)
d (qi, j)−v

(m)
d (qk,l)

∣∣∣2
2σ2

vc

)
selects the

range-τ points qk,l that has a similar Doppler velocity to
v(m)

d (qi, j), which enhances the Doppler velocity estimation
by excluding the unnecessary range-τ points. The above it-
eration steps are conducted until a preset conversion con-
dition, such as the maximum number of iterations, is sat-
isfied. The above data selection enables the elimination of
several unnecessary range-τ points that could be due to ran-
dom noise or interference effects.

3.3 Procedure of the Proposed Method

The procedure for the proposed method is summarized as
follows:

Step 1) Recorded signal is processed by CS filtering [26]

for each slow time τ, which is denoted as s(R, τ).

Step 2) Range-τ points qi, j are extracted from the set of lo-
cal maxima of s̃(R, τ).

Step 3) Initial Doppler velocity v̂(1)
d (qi, j) is obtained in

Eq. (3).

Step 4) Subset Q(m)
i, j is updated in Eq. (5).

Step 5) Doppler velocity is updated as v̂(m+1)
d (qi, j) in Eq. (4),

using the previously estimated Doppler velocities
as v̂(m)

d (qi, j).

Step 6) 4) and 5) are recursively repeated until the conver-
gence condition, such as the maximum number of
iterations, is satisfied.

Figure 3 gives the flowchart of our proposed method, and
the differences from the original WKD scheme detailed in
[26] are highlighted. The detail of the CS filter for range-τ
points extraction in [26]. Step 4 and 5) represent our inno-
vations from the original WKD scheme. That is, the range-τ
points are recursively weighted with the Doppler velocity to
attain more accurate Doppler velocity without requiring a
computationally expensive radar imaging step like in [26].
In particular, if α is set to a smaller value in Eq. (2), a num-
ber of range-τ points, caused by noises, would be extracted.
However, the proposed method eliminates these points by it-
eratively assessing the evaluation function Fvd on the right-
hand side of Eq. (4). This is because Fvd less increases in
focusing on a randomly distributed range-τ profile (noise),
compared with the case on a regularly distributed range-τ
profile (signal). In addition, the above proposed iterative
updating scheme is not applicable to the coherent integra-
tion based methods, this is why we have adopted the WKD
algorithm for further improvements of the Doppler velocity
estimations.

Fig. 3 Flowchart in the proposed method.
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4. Results of 3-D Numerical Testing with Human
Model

This section describes two 3-D numerical tests that use GO
and FDTD analyses. Note that, the GO is a forward solver
based on a higher-frequency approximation, with the dom-
inant propagation path determined by optical reflection law
[32]. This enables us to assess our method without consid-
ering any systematic errors caused by multiple scattering or
by the frequency dependency of the scattered signals. Next,
the FDTD simulation results would be presented, to as-
sess the accuracy dependency due to multiple reflections or
frequency-dependent scattering phenomena from each part
of the human body.

4.1 Numerical Settings

This section describes the simulation setup which is com-
mon to both GO and FDTD simulation scenarios. A hu-
man body target is approximated by an aggregation of 11
ellipsoids (for simplicity), as shown in Fig. 1. While the
original and proposed WKD methods are applicable to the
single transmitter and receiver models, we assume an ar-
ray configuration in this numerical model to provide reli-
able results. The 5×5 planar array with an equal spacing
of 50 mm are defined, where 4 transmitters are located at
the 4 vertex points of the array, and 25 receivers are placed
at 5×5 locations, this configuration means that a combina-
tion of 100 data points are processed. Note that, multiple
data points obtained using the above array are assumed to be
synchronously observed and integrated at each τ. For sim-
plicity, we consider a stepping motion of the human body
at the same position as the motion vector along the y axis.
Table 1 shows the Doppler velocities for each part of the hu-
man body. The transmitted signal is a pulse modulated with
a center frequency of 5.0 GHz and bandwidth of 3.0 GHz.
The PRI is set to 10.0 ms, and the total number of pulse
hits is set to 10; these parameters lead to a total observa-
tion time where Tc = 0.1 s, and then, τi = (i − 1) × 10 ms,
for i = 1, · · · , 10. For the Fourier transform-based analysis,
the lower limit of the Doppler velocity resolution is 0.30 m/s
using the center frequency of 5.0 GHz.

4.2 Results of GO Test

First, we present the results of the GO-based simulation test.
Figure 4 shows the results of the two different filters, such
as the Wiener and CS filters, where each threshold α is set
as 0.5 for the Wiener filter, and 0.3 for the CS filter. The
traditional Wiener filter was unable to decompose accurate
range points due to a lack of resolution because the GO
considers the interference effect among numerous reflection
echoes from each part of the human body. However, the CS
filter provided a more accurate distribution of range points.
The effectiveness of other super-resolution techniques, such
as the Capon method, has been demonstrated in [31]. Note

Table 1 Doppler velocity for each part of human body.

Doppler velocity Parts
−1.0 m/s Right lower arm & Left lower leg
−0.5 m/s Right upper arm & Left upper leg

0 m/s Head & Lower and Upper torso
0.5 m/s Left upper arm & Right upper leg
1.0 m/s Left lower arm & Right lower leg

Fig. 4 Reflection responses at each slow-time using different filters with
the GO generated data. Red dots denote the true profile.

that, the CS filtering requires a large computational time by
solving the optimization problem with a large number of un-
knowns. Furthermore, in dealing with a not-isolated target
model, such as a real human body, the sparse assumption is
not necessarily valid. These points are the limitation of CS
filtering. Figure 5 shows two examples of Doppler velocity
estimations using the method described in [26] and the pro-
posed method. Here, the parameters in the original WKD
algorithm and in the proposed method are set as, σs = 0.7,
σvd = 0.05 m/s, στ = 50 ms (5× PRI), and ξ = 0.2. The
iteration number is 5 and σvc = 0.15 m/s set in the pro-
posed method. It is clear that the proposed method signif-
icantly improves the Doppler velocity estimations by itera-
tively updating the Doppler velocity-based data selections.
Note that traditional Fourier transform schemes, such as the
STFT or other methods, including Radon Fourier transform,
are not effective for application to the CS output because
these responses lose carrier frequency and phase informa-
tion. In addition, especially for the outputs of the CS fil-
ter, since the pulse width is quite narrower, there are many
RW effects, that pulses are not overlapped along slow time
within same range resolution. Instantaneous frequency es-
timation methods such as Radon–Fourier transform and the
Wigner–Ville distribution cannot handle such impulsive CS
responses with lost phase and carrier-frequency information.
On the contrary, the WKD can handle impulse responses
without carrier frequency and phase, because it simply con-
verts the range-τ points (obtained from the response ampli-
tude) to Doppler velocities.

For quantitative validation, we introduced errors in
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Fig. 5 Results comparison of Doppler velocity estimation by GO data. (a) and (b): LT =

(100, 0, 900), LR = (0, 0, 900). (c) and (d): LT = (100, 0, 900), LR = (50, 0, 1100). Red solid circles
denote true points. Blue solid triangles denote reconstruction points.

Table 2 The cumulative probability of each criteria in the Doppler ve-
locity estimation by GO data.

Original WKD Proposed
Number of points 10750 9496
|∆R| ≤ 10 mm and
|∆vd | ≤ 0.1 m/s 66.3 % 99.3 %

|∆R| ≤ 20 mm and
|∆vd | ≤ 0.1 m/s 66.7 % 99.3 %

|∆R| ≤ 20 mm and
|∆vd | ≤ 0.2 m/s 93.9 % 100.0 %

the range as ∆R and the Doppler velocity as ∆vd. Ta-
ble 2 summarizes the cumulative probability for each error
criterion and also further demonstrates the improvements
in Doppler velocity estimations produced by the proposed
method. These results also indicate that, if we obtain ac-
curate range-τ points, the proposed method retains accu-
rate Doppler velocity profiles, even under conditions with
high interference levels. The calculation time was 12 s and
22 s for the original WKD and proposed algorithms with
five iterations, respectively, using an Intel Xeon Gold 6130
@2.10 GHz processor with 703 GB of RAM. Notably, be-
cause additional computations lasted 10 s more than the
original WKD (0 iteration), the average runtime in each
iteration step in the proposed algorithm requires only 2 s,
which is 6 times faster than the original WKD method be-
cause the proposed method processes a smaller number of
range-τ points in each cluster in Eq. (5). The estimation
accuracies of the original and proposed WKD are depen-
dent on the selected parameters of στ, σvd or σs. However,
a previous study [26] demonstrated that the estimation ac-
curacies of the Doppler velocity are not severely sensitive
to these parameters. Further, some studies have optimized
these parameters by considering the statistic characteristics
of the collected data points, e.g., using the Gaussian mixture
model and expectation maximization (EM) algorithm, as in
[33].

Fig. 6 Reflection responses at each slow-time using different filters with
the FDTD generated data. Red dots denote the true profile.

4.3 Results of FDTD Test

Next, we introduce the results from data generated by the
FDTD. In the FDTD model, each part of the human body is
assumed to have the same dielectric properties with relative
permittivities of 50 and conductivities of 1.0 S/m; these val-
ues are derived from the average properties of human tissue.
Figure 6 also shows the responses of the range extraction fil-
ter and indicates that there are several falsely detected range
points, which are due to the multiple scattering effects of the
targets, where each threshold α is set as 0.3 for the Wiener
filter, and 0.1 for the CS filter. Figure 7 also illustrates two
examples of Doppler velocity estimations, where the same
parameters of σs, σvd , στ, σvc , and ξ used in the GO simula-
tion test are used. Compared with the results obtained from
the GO simulation (an ideal case), there are non-negligible
errors in the measured ranges, which are mainly caused by
waveform deformations due to the curvatures or volumes of
the ellipsoids. Nonetheless, the proposed method provides
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Fig. 7 Results comparison of Doppler velocity estimation by FDTD data. (a) and (b): LT =

(100, 0, 900), LR = (−50, 0, 1100). (c) and (d): LT = (−100, 0, 1100), LR = (0, 0, 900). Red solid
circles denote true points. Blue solid triangles denote reconstruction points.

Table 3 The cumulative probability of each criteria in the Doppler ve-
locity estimation by FDTD data in noiseless case.

Original WKD Proposed
Number of points 17336 10411
|∆R| ≤ 10 mm and
|∆vd | ≤ 0.1 m/s 34.4% 63.1%

|∆R| ≤ 20 mm and
|∆vd | ≤ 0.1 m/s 42.8% 77.2%

|∆R| ≤ 20 mm and
|∆vd | ≤ 0.2 m/s 60.3% 81.8%

much better performance for Doppler velocity estimations
in this scenario. It also eliminates unnecessary Doppler ve-
locities, which might be due to multiple scattering effects.
Table 3 quantitatively demonstrates the errors. Note that the
ideal case would consist of obtaining 11,000 points for the
Doppler velocity points because we assumed 11 isolated,
ellipsoidal targets and a combination of 4 transmitters and
25 receivers. Thus, the initial number of Doppler veloc-
ity points (17,336) is too large and also includes unneces-
sary points due to multiple scattering effects, which have
been removed through the iterative assessment in the pro-
posed method using Eq. (5). In addition, as shown in Ta-
ble 3, the proposed method notably enhances the accuracies
of the estimated Doppler velocity points compared with that
provided by the original WKD method, even in the FDTD
scenario. This is because our algorithm reduces the weight
of the unnecessary SubRPs in Eq. (4), and thus improves the
accuracy of the Doppler velocities. We should note that the
calculation times are 31 s for the original WKD and 55 s
for the proposed method with 5 iteration steps, using the In-
tel Xeon Gold 6130 @2.10 GHz processor with 703 GB of
RAM. These increases from the GO simulation are due to
a larger number of range-τ points, and the average runtime
during each iteration step in the proposed method requires
only 4.8 s, which is 6.5 times faster than that by the original
WKD method.

A sensitivity to an additive random noise is investigated
as follows. Gaussian white noise is added to the received

Fig. 8 Results comparison of Doppler velocity estimation by FDTD data
in each SNR level at the observation pattern as LT = (100, 0, 900), LR =

(−50, 0, 1100). (a)–(c): Original WKD method. (d)–(f): Proposed method.
Red solid circles denote true points. Blue solid triangles denote reconstruc-
tion points.

signal. The signal to noise ratio (SNR) is defined as the ratio
of the maximum power of the received signals to the aver-
age power of the noise in the time domain. We tested three
SNR cases, namely 10 dB, 20 dB, and 30 dB. Here, each
method or SNR level assumes the same pattern of Gaus-
sian random data. Figure 8 shows the comparisons between
the method described in [26] and the proposed method for
each SNR level. These figures demonstrate that our pro-
posed method retains its superiority to the method described
in [26] for any SNR case, and it is considered that the pro-
posed method eliminates the falsely detected range points in
the iterative procedure. This is because the WKD method
assesses not only the neighbouring range-τ points to deter-
mine the Doppler velocity in Eq. (3) or (4), but also all pos-
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Table 4 The cumulative probability of each criteria in the Doppler ve-
locity estimation by the proposed method using the FDTD data at different
SNR levels.

SNR=30 dB SNR=20 dB SNR=10 dB
Number of
total points 8017 7834 6217

|∆R| ≤ 10 mm and
|∆vd | ≤ 0.1 m/s 73.6 % 73.8 % 71.0 %

|∆R| ≤ 20 mm and
|∆vd | ≤ 0.1 m/s 85.0 % 85.6 % 84.5 %

|∆R| ≤ 20 mm and
|∆vd | ≤ 0.2 m/s 89.0 % 89.4 % 89.4 %

sible combinations of range-τ points, which could provide
considerable noise-robustness by an averaging effect. Fur-
thermore, Table 4 compares the total number of estimated
points and cumulative probability, satisfying each error cri-
teria as to range and velocity estimation provided by the pro-
posed method for three SNR cases. The table shows that the
number of correct estimation points decreases at low SNR,
which is also illustrated in Fig. 8. However, the ratio sat-
isfying the specific error criteria such as ∆R ≤ 10 mm or
∆vd ≤ 0.1 m/s, namely, the cumulative probability is main-
tained even at low SNR values. It then, demonstrates our
method maintains the accuracy even under lower SNR case
and using incoherent processing. Note that, the cumulative
probability at SNR = 20 dB is slightly better than that ob-
tained at SNR =30 dB, which may be caused by the random-
ness of noise. However, the total available range-τ points
considerably decrease at lower SNRs when compared with
the original number of range-τ points, 11000. Note that,
these results are provided by a specific random pattern, and
statistical analysis should be used to reach a convincing con-
clusion.

5. Experimental Validation

In the experimental test, we introduce two scenarios. The
first is an X-band radar measurement with three spheri-
cal targets, which enables us to quantitatively validate each
method. The other is with millimeter-wave radar equipment
in the 24 GHz band, where a real human body in walking
motion is assumed, to demonstrate our proposed method in
a realistic situation.

5.1 Target: Metallic Spheres

5.1.1 Settings

First, we performed an experimental validation using X-
band UWB radar equipment. The geometrical setup of
the experiment is shown in Fig. 9, and uses a UWB im-
pulse radar system from Sakura Tech Corp. This system
uses a center frequency of 8.5 GHz and has a bandwidth of
1.5 GHz, which is defined as the frequency band bounded
by points 10 dB below the peak power [35]. Thus, the range
resolution is calculated as 100 mm. The two Fermi antennas
are vertically stacked and the upper and lower antennas with

Fig. 9 Experimental setup.

100-mm spacing are the transmitter and receiver, respec-
tively. The 3-dB beam widths of the antenna are 40◦ along
the E- and H-planes. Three metallic spheres with a 100-mm
diameter are rotated by the azimuth angle controller over a
range of π in the clockwise direction with a spacing of π/36
radian, and 36 observations are then conducted. To obtain
accurate Doppler and range profiles for the target, stop-and-
go observations are carried out for each rotation angle (pulse
hit). The distance from the observation point to the rotation
axis of the table is 490 mm. Here, the PRI is set to 156.25 ms
and the total observation time is 5.625 s with 36 pulse hits.

5.1.2 Results and Discussions

Figure 10 shows the STFT results for which the rectan-
gular temporal window was set to 1.875 s. This means
that, for this case, the Doppler velocity resolution is 0.009
m/s and the unambiguous Doppler velocity is ±0.197 m/s.
As in Fig. 10, the STFT analysis could not provide accu-
rate Doppler velocity responses and provide lower resolu-
tion of the Doppler velocities caused by the time-variant
Doppler velocities in the CPI, which is inherent prob-
lem in the Fourier transform based method, like Radon-
Fourier or other coherent based approaches. Also, the actual
Doppler velocities range to above 1.0 m/s, which are clearly
greater than the upper limit of the unambiguous velocity of
0.0575 m/s. It should be also noted that the coherent inte-
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Fig. 10 STFT responses in range-Doppler velocity space using the tem-
poral window width of 1.875 sec. Red solid circles denote the actual
Doppler velocity at the center of each time window. Color bar denotes
the strength of STFT responses.

Fig. 11 Outputs of CS filters and the Doppler velocity estimations by
each method, where the color denotes the Doppler velocity estimated at
each range-τ point.

gration schemes, such as STFT or Wigner-distribution anal-
yses, require a sufficient CPI for obtaining the necessary ve-
locity resolution and coherent averaging effect to boost the
SNR.

In contrast, Fig. 11 shows the responses obtained by
the CS filter for each slow time, as well as the range-τ ex-
tractions, and the color of each point denotes the estimated

Fig. 12 (a) and (b): Doppler velocity estimation results at each slow-time
with the experiment data. Black curves denote the actual Doppler velocity
curves.

Doppler velocity. Figure 12 also compares the results of the
Doppler velocity estimation in Doppler-τ space. The fol-
lowing parameters were set in the WKD algorithm, α = 0.2,
σs = 0.7, σvd = 0.02 m/s, and στ = 312.5 ms (2× PRI). The
iteration number is 10 and σvc = 0.2 m/s and ξ = 0.2 set
in the proposed method. Figure 11 demonstrates that while
the front two target responses are clearly observed, some
responses from the back targets are lost because of shad-
owing effects. Figure 12 shows the slow-time and Doppler
profile, and shows that our proposed method provides more
accurate Doppler profiles by eliminating the redundant out-
liers that were present in the original WKD method. Ta-
ble 5 summarizes the cumulative probability of each error
criterion; this result also demonstrates that our proposed al-
gorithm successfully improves the accuracy of the Doppler
velocity estimations. Note that when comparing the results
obtained in the simulation described in Sect. 4, the accuracy
improvement from the original WKD method is not remark-
able. This is because, since the experimental setup assumes
that the three spheres have a certain separation, and this sit-
uation would not cause the outliers so much and the original
WKD retains its accuracy at a certain level. Then, the su-
periority of our proposed method would be more clear in
assuming a greater number of target cases, as in the simu-
lation model, because the iterative clustering scheme better
decomposes the range-τ response from each target.

5.2 Target: Real Human

5.2.1 Setting

Next, we investigate a real human body target in a walking



HAYASHI et al.: ACCURATE DOPPLER VELOCITY ESTIMATION BY ITERATIVE WKD ALGORITHM FOR PULSE-DOPPLER RADAR
1609

Table 5 The cumulative probability of each criteria in the Doppler ve-
locity estimation by the experimental data.

Original WKD Proposed
Number of points 93 70
|∆R| ≤ 10 mm and
|∆vd | ≤ 0.01 m/s 41.1% (38/93) 50.0% (35/70)

|∆R| ≤ 20 mm and
|∆vd | ≤ 0.02 m/s 50.6% (47/93) 55.7% (39/70)

|∆R| ≤ 20 mm and
|∆vd | ≤ 0.01 m/s 42.2% (40/93) 52.9% (37/70)

Fig. 13 Experimental setup. (a): Arrangement for MMW radar and hu-
man body target. (b): Walking scene with slow and normal speed.

motion, using FMCW millimeter wave radar with a center
frequency of 24 GHz and 2.0 GHz bandwidth (Sakura Tech
Corp). Because we could not apply the stop-and-go ob-
servation in the real human walking scenario, we used the
above FMCW radar, where accurate PRI data acquisition is
possible. Figure 13 illustrates the experimental setup, in-
cluding the radar and the human target. Both the E- and
H-plane of the patch antenna are 15 degrees in the 3-dB
criteria. The PRI is 10 ms, and denotes an unambiguous
velocity as ±0.31 m/s, that is much less than the maximum
velocity of the arm or leg in the walking motion with the
order of ±1.0 m/s. During the test, the human subject takes
a stepping motion on a certain spot, which is approximately
1500 mm far from the radar site. Here, the two walking mo-
tion cases are investigated, Case 1 (called slow speed) is the
case of the walking motion with an average interval of 3.2 s,
and Case 2 (called normal speed) is that with an average
interval of 1.4 s.

5.2.2 Results and Discussions

Figure 14 shows the Doppler slow-time profile given by the
STFT results. The CPI is set to 0.10 s and R = 1500 mm.
In this case, the Doppler velocity resolution is 0.062 m/s.
As shown in this figure, the STFT responses characterize
the Doppler velocity variance to some extent, but the avail-
able unambiguous velocity (±0.31 m/s) does not cover the
maximum Doppler velocity of an arm or leg, which exceeds
±1.5 m/s at normal speeds. The STFT is useless in such
large PRI cases. Figure 15 shows the measured range-τ pro-
files and the extracted range-τ points with the matched filter
is applied, where the reference profiles are also compared.
Note that, to generate a reliable reference profile of range-
τ points, all the range-τ points of 64 channels (4 transmit-

Fig. 14 Doppler velocity responses as a function of slow time τ obtaibed
by the STFT based analysis with the temporal window width of 0.1 sec.

ters × 16 receivers) are assessed, which are available by this
radar system, simultaneously (denoting red points in (a) and
(d) in Fig. 15). Because the spacing between the 3-D arrays
(6.2 mm) is much smaller than the distance from the array
to the target, profiles of all channels would express the same
profiles. Furthermore, in Fig. 16(a) and (d), we introduce the
outlier detection algorithm of these range-τ points to select
a reliable range-τ profile. Here, we introduced the angle-
based outlier detection (ABOD) algorithm [36] to assess the
outlier at the measured range-τ points. We then consider
the remaining range-τ points (blue dots in Fig. 16(a) and
(d)) as a reference profile. By using these results, Table 6
shows the cumulative probabilities for including the outliers
in the original and proposed WKD methods by changing
the thresholds of the ABOD. These results quantitatively
verify that the iterative clustering approach in our proposed
method significantly reduces the ratio of outlier inclusion.

Furthermore, Fig. 16 shows the Doppler-τ profiles as-
sociated solely with range-τ points, with the data shown in
Fig. 15 by each method. Here, α = 0.3, ξ = 0.2, σs = 106,
στ = 0.05 s, and σvd = 0.4 m/s, σvc = 0.15 m/s are set.
Note that, a quantitative error for the Doppler velocity is
hardly assessed in this case, because we could not obtain
a statistically convincing reference (ground truth) profiles.
However, the outlier detection results in range-τ points in
Table 6 guaranteed that our proposed method effectively re-
moves the unnecessary estimated points even in real human
walking case.

The computational run times for the original WKD and
the proposed method are 13 s and 15 s, respectively, with
the proposed method using only two iterations of data clus-
tering. Note that the proposed method requires only 2 s of
additional processing time for a significant improvement in
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Fig. 15 Range-τ responses using the matched filter assuming real human walking motion in the exper-
iment, where the color denotes the Doppler velocities estimated by the original WKD and the proposed
WKD algorithms. The blue and red dots in reference profile (a) and (d) denote all the range-τ points at
64 channels with and without applying the ABOD outlier elimination, where the threshold is set to 5%.
(a), (b), and (c): Case 1 (Slow speed). (d), (e), and (f): Case 2 (Normal speed).

Table 6 Cumulative probabilities of including the outlier points in each human walking case in the
experiment, in changing the threshold in the ABOD detection.

Case 1 Case 2
Threshold Original WKD Proposed Original WKD Proposed

5% 16.3% 14.8% 18.0% 15.0%
10% 24.3% 22.0% 26.7% 22.4%
20% 35.6% 32.5% 38.1% 33.0%

accuracy. This is possible because the WKD algorithm is
applied to each cluster of range-τ points as Q(m)

i, j in Eq. (4).
Nonetheless, the total processing time is required 15 sec-
onds because we deal with the range-τ points over 2 sec pe-
riod. This should be largely reduced in assuming the practi-
cal scenario, like collision avoidance, using a smaller set of
slow-time data.

5.3 Qualitative Comparison to Coherent Approach

This section describes the applicability or limitation of the
WKD based method, compared with the traditional coherent
integration based method.

5.3.1 PRI

First, we show the required PRI and available Doppler ve-
locity resolutions in the coherent integration based method
assuming human walking motion and using the Fourier
transform based method. For example, if require a temporal
resolution of 10 ms and an unambiguous velocity range of
±3 m/s assuming the human walking motion scenario, the
PRI and the available Doppler velocity resolutions are sum-
marized 5.8 GHz, 24 GHz, and 61 GHz as in Table 7 at the
typical industry science and medical (ISM) band frequency.

As shown in Table 7, while the PRI would be achievable
in the typical radar equipment in the case of 5.8 GHz and
24 GHz band, the Doppler velocity resolution is insufficient
to follow the detailed motion of each part of the human
body. Additionally, at 61 GHz, it offers 0.25 m/s velocity
resolution, and is possibly applicable to tracking the human
walking motion with micro-Doppler analysis, even in using
the STFT analysis. However, in the lower PRF, the WKD
method would have an advantage in terms of temporal and
velocity resolution without the limitation of unambiguous
velocity range.

5.3.2 Bandwidth (BW)

Although this study was conducted with a low PRF, the orig-
inal and proposed WKD applies to higher-PRF scenarios
with a wide bandwidth (BW), such as those used in the ISM
band automobile radar. In the case of the higher-PRF radar,
the WKD algorithm can provide a higher temporal resolu-
tion, because more densely sampled range-τ points along
the slow-time direction can be processed. Furthermore, if
στ, as the correlation length for τ, becomes large, the veloc-
ity estimation accuracy will be enhanced by the averaging
effect. For a wider BW, the RW effect is predicted to be more
severe because the neighboring pulses do not overlap within
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Fig. 16 Doppler-τ responses using the matched filter assuming real human walking motion in the
experiment. (a) and (b): Case 1 (Slow speed). (c) and (d): Case 2 (Normal speed).

Table 7 Available Doppler velocity resolution with STFT analysis and
PRI in each ISM band.

Frequency 5.8 GHz 24 GHz 61 GHz
PRI 4 ms 1040 µs, 41 µs

Doppler velocity resolution 2.58 m/s 0.62 m/s 0.25 m/s

a higher range-resolution cell. Therefore, the WKD algo-
rithm has a significant advantage in properly addressing the
aforementioned RW problem. In addition, super-resolution
techniques, such as CS filters, should decompose the tar-
get responses along the range direction in the case of a nar-
rower BW, such as the 24-GHz ISM band. Thus, when using
such super-resolution techniques, as those demonstrated in
Sects. 4.2 or 4.3, the RW effect would be severe.

5.3.3 Noise Robustness

Finally, our proposed method has some shortcomings or
limitations compared to coherent-integration-based meth-
ods, such as STFT or Wigner distribution analysis. For ex-
ample, when a chirp is processed based on Wigner distri-
bution analysis, the SNR increases N-fold, where N is the
number of pulses in the CPI. The WKD method does not
have this advantage. However, these coherent integration
schemes assume that the Doppler velocity is invariant within
the CPI. This assumption would be violated in a longer-PRI
scenario and when dealing with human walking motions or
a rotating target, as assumed in our experiments. Coherence-

based methods offer higher-resolution Doppler velocity pro-
files with a narrower signal bandwidth, or can be a higher
S/N gain. We expect that the data decomposition based on
wave number like [37], can address these limitations, as-
suming that the higher-frequency MMW radar with much
narrower bandwidth case and higher coherent gain or range
resolution would be available for range-τ point extraction.
The aforementioned incorporation is also within our future
scope.

6. Conclusion

This paper introduces a new algorithm for iterative data se-
lection (soft clustering) using the WKD-based Doppler ve-
locity estimator. The proposed method exploits a unique
feature of the WKD algorithm; each range-τ point has
a one-to-one correspondence with a range-Doppler veloc-
ity point. In this method, the outliers generated by inter-
ference between targets or random noises are effectively
eliminated using iterative thresholding algorithm with the
WKD’s evaluation function. Using the iterative data weight-
ing method, the 3-D GO and FDTD numerical tests, as-
suming a human-body imaging scenario, have quantitatively
demonstrated that our proposed method significantly im-
proves the Doppler velocity estimation accuracies. Specifi-
cally, in the FDTD-based numerical test, the proposed algo-
rithm retains over 80% cumulative probability in satisfying
the range and velocity errors within 20 mm and 0.2 m/s, re-



1612
IEICE TRANS. COMMUN., VOL.E105–B, NO.12 DECEMBER 2022

spectively, which is 20% greater than that obtained by the
original WKD, and it requires 55 s to handle all range-τ
points. In addition, the two types of experimental valida-
tions are investigated. The first is with the X-band radar
assuming three rotating metallic spheres and the other us-
ing the FMCW millimeter wave radar for real human walk-
ing targets of different speeds. These results demonstrated
that the proposed algorithm improved the accuracy of the
Doppler velocity estimation with only a 15% increase in the
computation time compared with the original WKD algo-
rithm.

Note that our method is naturally extendible to other
moving objects and not limited to human walking analysis.
In this study, we focused on a human-body classification,
but the micro-Doppler effects of other targets, such as ani-
mals, cyclists, and other fluctuating objects, should also be
classified. In future work, we will tackle this task by exploit-
ing the higher resolution and accuracy features of Doppler
velocity estimation in the proposed method.
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