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PAPER
Parametric Wind Velocity Vector Estimation Method for Single
Doppler LIDAR Model

Takayuki MASUO†a), Student Member, Fang SHANG†, Shouhei KIDERA†, Tetsuo KIRIMOTO†,
Hiroshi SAKAMAKI††, and Nobuhiro SUZUKI††, Members

SUMMARY Doppler lidar (LIght Detection And Ranging) can provide
accurate wind velocity vector estimates by processing the time delay and
Doppler spectrum of received signals. This system is essential for real-
time wind monitoring to assist aircraft taking off and landing. Considering
the difficulty of calibration and cost, a single Doppler lidar model is more
attractive and practical than a multiple lidar model. In general, it is impos-
sible to estimate two or three dimensional wind vectors from a single lidar
model without any prior information, because lidar directly observes only
a 1-dimensional (radial direction) velocity component of wind. Although
the conventional VAD (Velocity Azimuth Display) and VVP (Velocity Vol-
ume Processing) methods have been developed for single lidar model, both
of them are inaccurate in the presence of local air turbulence. This paper
proposes an accurate wind velocity estimation method based on a paramet-
ric approach using typical turbulence models such as tornado, micro-burst
and gust front. The results from numerical simulation demonstrate that
the proposed method remarkably enhances the accuracy for wind velocity
estimation in the assumed modeled turbulence cases, compared with that
obtained by the VAD or other conventional method.
key words: Light Detection and Ranging (lidar), single lidar model, local
air turbulence estimation

1. Introduction

Low-level windshear related to local turbulence is one of the
main factors which can lead to aircraft accidents in landing
or taking off [1]. Since the operation of real-time monitor-
ing systems commenced with terminal Doppler wind radar
(TDWR) at the beginning of the 1990s in the United States
[2], a number of signal processing approaches for wind ve-
locity measurement techniques using Doppler radar have
been actively investigated [3], [4]. However, Doppler radar
systems work only when it rains, because it requires an echo
from raindrops. In recent years, the remote sensing tech-
nique with lidar (light detection and ranging) has entered
into the spotlight as a technique for velocity estimation and
wind shear detection [5]. lidar measures the wind velocity
by analyzing the echo scattered by atmospheric aerosols and
molecules. Subsequently, not only for rainy weather, the li-
dar can be generally used in all weather conditions, except
for heavy rain or snow fall. Basically, there are two opera-
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tion modes of the lidar system. Multiple lidar systems can
measure the general two dimensional(2-D) wind velocity in
real atmospheric situation, however, operators suffer great
difficulties for calibrating radial velocities in such system
[6]–[8]. On the contrary, a single lidar system is considered
preferable since it does not need complicated calibration or
synchronization.

The velocity azimuth display (VAD) method is one of
the most simple or useful models for the single lidar system
[9]. The VAD method assumes that the wind has a constant
speed and direction with the same range but different az-
imuth angles. This assumption makes it possible to calculate
the 2-D velocity vector field using only a single-lidar model.
However, in some cases, such as local air turbulence, with
significant variation in local area, the VAD method yields
inaccurate velocity vector estimations. As another approach
for solving this problem, the velocity volume processing
(VVP) method is developed based on linear approximation
of velocity distribution in local spatial region [10]. However,
in the case of non-linear distribution, this method does not
achieve sufficient accuracy, naturally, due to assuming the
linear-distribution. As a solution for this problem, we have
already proposed the extended VAD method that adaptively
changes the correlation area in the cost function [11]. While
some cases show that the extended VAD method achieves
better performance in estimating wind velocity than either
VAD or VVP, it shows still room for improvement in lo-
cal air turbulence estimation accuracy. As other literature,
turbulence estimation and detection methods using a single
lidar have been discussed, where the difficulty of developing
accurate wind velocity estimation is demonstrated [12].

In an aircraft landing or taking off situation, since it is
required for the operator to judge what kind of the local tur-
bulences could occur along the aircraft path, it is rather im-
portant to recognize the typical local turbulences (e.g. gust
front or tornado) with its location and scale from the ob-
served Doppler velocity distributions, than to know the gen-
eral 2-D velocity map. According to this background, this
paper proposes the parametric window velocity estimation
method for specific turbulence models, such as tornado or
gust for single lidar model. Although the parametric ap-
proach for typical tornado model has been proposed using
Ranking vortex model [13], it did not introduces the com-
parison or recognition of different kinds of turbulence. The
proposed method introduces mathematical turbulence mod-
els, i.e., uniform distribution, tornado, microburst, and gust
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Fig. 1 System model.

front, and determines the optimum parameters by minimiz-
ing the residual errors between observed and estimated ra-
dial velocity discrepancy. In addition, this method has no-
table feature that an occurred air turbulence is directly and
automatically determined in the process of optimization. To
solve the multi-dimensional optimization problem, we em-
ploy the particle swarm optimization (PSO) is used here to
avoid the local optimal solution [14]. The results of 2-D nu-
merical analyses show that the proposed method achieves
significantly higher accuracy in comparison with conven-
tional methods with automatically selecting an appropriate
turbulence model.

2. System Model

This paper assumes the 2-D problem in monostatic lidar ob-
servation. Figure 1 shows the system model. In this fig-
ure, each black circle denotes a resolution cell, whose size
is determined by the range and azimuth resolution of lidar.
The parameter vr denotes the radial velocity, φ is the angle
in the azimuth direction and θ is the angle of u from the
y axis. u denotes a wind velocity vector with components
(usin(θ), ucos(θ)) in directions x and y. Wind vectors of the
observation area are expressed by using such polar coordi-
nation model as (u, θ). It also assumes that the horizontal
wind is invariant in the observed event.

3. Conventional Methods

This section introduces the three conventional approaches,
which are typically used in single lidar issue.

3.1 VAD Method

The VAD method estimates a wind velocity vector, under
the assumption that the velocity vector is invariant in an area
of constant distance but varying in azimuth direction. The
methodology of this method is briefly explained as follows.
Here, r denotes the distance between the observation cell
and lidar location. When the curve of the surface of the
Earth is negligible, the radial velocity is defined as

vr(r, φ) =
1
2

r
(
∂u
∂x
+
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)
+ v0cosφ + u0sinφ

+
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2
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(
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sin2φ, (1)

where (u, v) denotes x and y components of a wind vector u
in the spatial domain and (u0, v0) is a wind vector in the cen-
ter of the correlation region. Assuming a uniform distribu-
tion in this correlation region, the partial differential terms
of Eq. (1) can be eliminated and the radial velocity can be
expressed as

vr(v(ri), θ(ri)) = vcos (θ − φ) . (2)

The wind velocity is estimated by minimizing the square
mean of residuals as(
v̂(ri), θ̂(ri)

)
= argmin
v(ri),θ(ri)

∑
ri∈Ωi

{vr (vh(ri), θ(ri)) − vr,obs(ri)}2,

(3)

where Ωi denotes the correlation region centered on the ob-
servation cell ri and vr,obs(ri) denotes the observed radial ve-
locity. Given that the VAD method assumes a uniform wind
in the correlation region, its estimation accuracy is signifi-
cantly degraded in the case of large variance in evaluating
cells.

3.2 VVP Method

The VVP method calculates the wind velocity vector by
making a linear approximation of the spatial variance of
the wind field. Supposing (x0, y0) is the center location of
the observed region, the wind vector u (x, y) of the location
(x, y) is expanded by making the first-order approximation
of a Taylor series expansion as,

u (x, y) ≃ u (x0, y0) +
∂u
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(y − y0) . (4)

The radial velocity can then be expressed as

vr = u ·
(
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)
= PK, (5)

where
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Parameter ix and iy are unit vectors in directions x and
y respectively, u0

′Cv0′ are defined as u0
′ = u0 − ∂u∂yy0 and

v0
′ = v0 − ∂v∂x x0. In general, the number of observation data

n satisfies the condition n ≫ rank(K). K is calculated using
the least-squares method of observed radial velocities. Pa-
rameter ur composed of n radial velocities is expressed by P
as ur = PK. The normal equation for K is found from

K =
(
PT P

)−1 (
PTur

)
. (6)
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Fig. 2 Adaptive correlation length in the extended VAD method.

Parameter u0
′ and v0′ obtained from Eq. (6) should include

the rotation term. Since this method makes a linear approx-
imation of the spatial variance of the wind field, in a nonlin-
ear case such as turbulence, its accuracy degrades. In addi-
tion, because the difference operation is used in calculating
the wind velocity, the method is, in general, much sensitive
to fluctuations of the measurement errors.

3.3 Extended VAD Method

The main problem of the VAD and VVP methods is that as-
sumption of both methods which the distribution in spatial
domain is uniform or linear approximation becomes invalid
under the local air turbulence. To overcome this problem,
the literature [11] have extended the original VAD method
by adaptively optimizing the spatial correlation length for
the wind field calculation, i.e., the method optimizes not
only the wind velocity vector but also the spatial correlation
length σ (ri). The three parameters are determined by(
v̂ (ri) , θ̂ (ri) , σ̂ (ri)

)
=

argmin
v(ri),θ(ri),σ(ri)

∑
r j∈Ωi

e
− |ri−r j |2

2σ2(ri) {vr (v(ri), θ(ri)) − vr,obs(ri)}2∑
r j∈Ωi

e
− |ri−r j |2

2σ2(ri)

,

(7)

where σ (ri) denotes the correlation length in the spatial do-
main. Ωi denotes the correlation region centered on the ob-
servation cell ri. Figure 2 shows the adaptive correlation
region according to the wind field. This method allows us to
estimate the wind velocity in the case of local air turbulence
by adaptively changing the spatial correlation length. It has
been demonstrated that extended VAD method can provide
more accurate estimation of wind vectors than the VAD and
VVP methods, but it suffered from severe inaccuracy in the
case of larger local variance cases, such as tornado or gust
front [11].

4. Proposed Method

This section presents the principle and methodology of the
proposed method. As previously mentioned, all the afore-
mentioned conventional methods suffer from inaccuracy for

velocity estimation, in the case of local air turbulence. As a
solution to this problem, this paper introduces a parametric
approach by introducing the mathematical model for each
turbulence pattern as follows.

(1) Uniform Distribution model
v and θ are constant at all observation cells. Then,
the parameter vectors in this model is defined as p1 =

(v, θ).
(2) Tornado model

The tornado is approximated using the Rankine vortex
model [17] in which the wind velocity norm reaches a
maximum vc at a distance rc from the center location.
This model is expressed as

∥u∥(x, y) =


vc
rc

d(x, y) (d ≤ rc)
vcrc

d(x, y)
(d > rc)

, (8)

where d(x, y) =
√

(x − xc)2 + (y − yc)2. (xc, yc) is the
coordinates of the center locations of the tornado, and
the wind direction is expressed as

θ(x, y) = tan−1
(

x − xc

y − yc

)
+
π

2
. (9)

Then, the parameter vectors in this model is defined as
p2 = (xc, yc, rc, vc).

(3) Microburst model
The microburst represents a downdraft, and generates
a strong gust in the radial direction when it hits the
ground. The wind velocity variation model of the mi-
croburst is similar to that of tornado model using the
Rankine vortex model [18]. The wind direction is ex-
pressed as

θ(x, y) = tan−1
(

x − xc

y − yc

)
, (10)

where ∥u∥ is determined in Eq. (8). Then, the parameter
vectors in this model is defined as p3 = (xc, yc, rc, vc).

(4) Gust front model
The gust front is the updraft generated by the collision
of air currents. The norm of the 2-D wind vector of this
model is expressed as

∥u∥(x, y) =


vcos

(
tan−1

(
− σ2

D(x,y)2

))
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,

(11)

where v denotes the constant coefficient, σ is the cur-
vature coefficient of the wind velocity variation, and
D(x, y) =

√
(xc − x)2 + (yc − y)2 − R. Boundary of Ω1

and Ω2 is called shear line, and is drawn in a circle of
radius R. The wind direction is expressed as

θ(x, y) =


tan−1

(
x − xc

y − yc

)
((x, y) ∈ Ω1)

tan−1
(

x − xc
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)
− π ((x, y) ∈ Ω2)

. (12)
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Fig. 3 Flowchart of the proposed method.

Then, the parameter vectors in this model is defined as
p4 = (xc, yc,R, v, σ).

Using the above mathematical wind model, the turbulence
model denoted is determined as;

k̂ = argmin
k

minpk

∑
r j∈Ω

(
vr,est

(
pk

) − vr,obs(r j)
)2

 , (13)

where k denotes the index number of turbulence model, Ω
denotes all the observation region and pk denotes parameter
vector in the kth turbulence model, which includes the loca-
tion or scale of each turbulence. vr,est

(
pk

)
is the calculated

radial velocity from kth turbulence model. This method au-
tomatically selects the most appropriate model by evaluat-
ing the radial velocity, and offers accurate estimation with
a small number of optimization variables. In this case, to
avoid the local optimization problem, the PSO algorithm is
introduced in this optimization [14]. Furthermore, this pa-
per introduces the network structure into the PSO algorithm
to improve a convergence performance [15], [16]. Figure 3
shows the flowchart of the proposed method.

5. Performance Evaluation in Numerical Simulations

This section describes results of the numerical simulation
conducted for performance analysis. In these simulations,
21 and 11 cells are sampled in the range and azimuth di-
rections, respectively. The observation interval is 150 m in
the range direction and 6◦ in the azimuth direction at the
range of −30◦ ≤ φ ≤ 30◦. Note that, the characteristic of
synoptic-, meso-, and local-scale meteorological phenom-
ena is time dependent, naturally. However, it is considered
that this time variance effect is negligible within an updating
time of lidar, because the beam scanning velocity of lidar is
estimated as 10 deg/sec, indicating that the updating rate for
wind vector fields for 60 degree azimuth range is less than
10 sec. Since the average motion velocity of tornado is in
the range between 10 and 20 meters, the motion amount in

Fig. 4 True wind vectors ((a): uniform distribution, (b): tornado, (c):
microburst and (d): gust front).

updating interval is estimated around 60 m, which is within
the range resolution (150 m in this case). Then, we regard
that the variance of center location or size of each turbulence
could be ignored in this case. We assess the performance of
the proposed method for four wind field models as uniform
distribution, tornado, microburst and gust front. These tur-
bulences greatly affect the safety of aircraft navigation.

True wind vectors in each wind field model are shown
in Fig. 4. True parameters of each wind field model are
set to p1 = (v, θ) = (10m/s, 135◦), p2 = (xc, yc, rc, vc) =
(0 m, 1500 m, 200 m, 20 m/s), p3 = (xc, yc, rc, vc) =

(0 m, 1500 m, 200 m, 20 m/s), p4 = (xc, yc,R, v, σ) =

(−1500 m, 3000 m, 2000 m, 5 m/s, 140 m) respectively. Fig-
ures 5, 6, 7 and 8 present the wind vector estimated using
the VAD, VVP, the extended VAD and proposed methods,
respectively, in noiseless situation. Here, in the case of the
original VAD, each cell denoted as ri is evaluated by using
two neighboring cells (denoted asΩi in Eq. (3)) along the az-
imuth direction at the same range. Also, in the VVP method,
each cell is evaluated by four neighboring cells along range
and azimuth directions. In PSO algorithm, we set a number
of particle, replication and network-bound particles as 500,
200 and 3 respectively. In particular, the estimation errors
of tornado and microburst, in the far range regions, are sig-
nificantly reduced by the proposed method, while the other
methods suffer from the significant inaccuracy in such case.

For quantitative analysis of the estimation accuracy
of the wind field, the normalized root mean square error
(NRMSE) is introduced as

NRMSE =

√∑N
i=1 |utrue − ui|2∑N

i=1 |utrue|2
, (14)

where N denotes the number of observation cells, and utrue
and ui are true wind vectors and estimated wind vectors, re-
spectively. Table 1 gives the NRMSE for each method. Ta-
ble 1 shows that, in comparison with the VAD, VVP and
the extended VAD methods, the proposed method achieves
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Fig. 5 Estimation results with VAD method ((a): uniform distribution,
(b): tornado, (c): microburst and (d): gust front).

Fig. 6 Estimation results with VVP method ((a): uniform distribution,
(b): tornado, (c): microburst and (d): gust front).

significantly lower NRMSE for the tornado, microburst, and
gust front models. The estimation accuracy of gust front is
slightly degraded to other models because, in this model,
the number of parameters in mathematical model, namely,
optimization variables, is larger than that of other models.

Next, we consider the effect of random fluctuations on
the measurement of the radial velocity, namely the evalua-
tion in noisy situation. Lidar steadily includes fluctuation
on radial velocity as measurement equipment error. Since
the SNR for each observation data significantly depends on
a selected filtering process or the assumed type of random
noises (Gaussian or others), we directly add the fluctuation
to observed radial velocity based on the actual lidar mea-
surement, for simplicity. We add the fluctuation ∆vr for the
observed radial velocity, whose probability density function
follows a Gaussian distribution. Standard deviation of this
Gaussian fluctuation ς is varied between 0.2 m/s and 1.0 m/s.

Fig. 7 Estimation results with the extended VAD method ((a): uniform
distribution, (b): tornado, (c): microburst and (d): gust front).

Fig. 8 Estimation results with the proposed method ((a): uniform distri-
bution, (b): tornado, (c): microburst and (d): gust front).

Table 1 NRMSE in each wind field model.
Uniform Wind Tornado Microburst Gust Front

VAD 6.50 × 10−3 1.36 1.79 0.988
VVP 1.25 × 10−7 7.45 6.15 3.41

Ex. VAD 6.50 × 10−3 0.761 1.04 0.713
Proposed 3.31 × 10−4 0.166 0.162 0.191

Figure 9 shows the NRMSE versus ς. This figure show that
each NRMSE rapidly increases with increasing standard de-
viation of the fluctuation ς in the conventional methods. In
contrast, the proposed method remarkably suppress the ac-
curacy degradation even in more fluctuated cases.

Next, we assess effect of fluctuations on assumed math-
ematical model. Since the natural wind includes the fluctu-
ation of the wind velocity vector, to reproduce this case by
adding the fluctuation in the parameters that constitute the
wind velocity vector field, that is to say, the exact solution
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Fig. 9 The NRMSE versus ςn ((a): uniform distribution, (b): tornado,
(c): microburst and (d): gust front).

Table 2 Standard deviation of ∆pk for each parameter.

Turbulence type pk S.D of ∆pk

Uniform Wind (v, θ) (5 m/s, 10 deg.)
Tornado (xc, yc, rc, vc) (150 m, 150 m, 100 m, 10 deg.)

Microburst (xc, yc, rc, vc) (150 m, 150 m, 100 m, 10 deg. )
Gust Front (xc, yc,R, v, σ) (150 m, 150 m, 20 m, 5 m/s, 30 m)

Fig. 10 Estimation results in parameter fluctuations ((a): tornado, (b):
microburst).

Table 3 NRMSE in each wind field model with parameter fluctuations.

Uniform Wind Tornado Microburst Gust Front
VAD 0.654 1.95 1.99 1.67
VVP 2.51 6.94 6.34 4.25

Ex. VAD 0.493 1.57 1.34 1.04
Proposed 0.108 0.418 0.471 0.425

for the turbulence parameters depends on the location of ob-
servation cell. The parameter vectors including fluctuations
expressed as p̂k = pk + ∆pk, where ∆pk denotes an error
vector from actual one. Table 2 denotes the standard devi-
ation of ∆pk for each model, in this case. The left side and
right side of Fig. 10 show the examples for the cases of tor-
nado and microburst wind vectors by the proposed method,
where parameter fluctuations in Table 2 are given. Table 3
gives the NRMSE for each method in this case, and even in
the case that a unique solution does not exist.

Fig. 11 Estimation results of window velocity with mixture models ((a):
Actual, (b): VAD, (c): VVP, (d): extended VAD and (e): proposed method).

Finally, to test more general case, the case where mul-
tiple turbulence models are mixed together, is investigated
for revealing the relevance of the proposed method. Here,
the actual distribution of the window velocity vector field
u(x, y) is expressed as the linear combination of each turbu-
lence model as;

u(x, y) = wuniuuni(x, y; p1) + wtorutor(x, y; p2)
+ wmicroumicro(x, y; p3) + wgustugust(x, y; p4). (15)

Figure 11 shows the examples of this mixtured model for
each method, where (wuni, wtor, wmicro, wgust) = (0.2, 0.5, 0.1,
0.2), that is, the tornado field is relatively domi-
nant. True parameters of each wind field model
are set to p1 = (v, θ) = (10m/s, 135◦), p2 =

(xc, yc, rc, vc) = (0 m, 1500 m, 200 m, 20 m/s), p3 =

(xc, yc, rc, vc) = (0 m, 1500 m, 200 m, 20 m/s), p4 =

(xc, yc,R, v, σ) = (−1500 m, 3000 m, 2000 m, 5 m/s, 140 m)
respectively. Here, the proposed method judges the
dominant turbulence is “tornado” by comparing the cost
functions in Eq. (13) among all possible turbulences.
The estimated parameter of tornado model is p̂2 =

(8.9 m, 1453 m, 196 m,−10 m/s). The NRMSEs for each
method in this case are 2.75 for the VAD method, 6.84
for the VVP method, 1.864 for the extended VAD method
and 1.61 for the proposed method, respectively. This re-
sults show that our method has the least error in this mixture
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model. To enhance the accuracy in this method, it is promis-
ing to determine each weight value in the optimization, but it
also requires more calculation time in the PSO optimization.
Those problems should be treated in our future works.

6. Conclusion

This paper has proposed an accurate wind vector estimation
method based on parametric estimation using four mathe-
matical turbulence models. The results of numerical simu-
lations have shown that the proposed method has has higher
accuracy in estimating the wind vector than conventional
methods. In addition, it is found that the proposed method
method offers greater robustness to fluctuations on the mea-
surement of the radial velocity and wind model. Note that,
in the simulation of this study, the range cell resolution is set
to 150 m, but in the case of smaller scale of meteorological
phenomena, such cell resolution is not enough to determine
the parameters accurately as less data is compared to un-
knowns (the degree of freedom of parameter p). However,
the actual lidar measurements demonstrated higher range
resolution of around 25 m, then, if the scale of local tur-
bulence is smaller than 100 m, enough number of observa-
tion cells is available by using such higher range resolution
lidar system. Since a coherent Doppler wind lidar uses a
pulse laser with a long pulse width, we need to consider
the trade-off between range and frequency resolutions in this
case, which depend on the sampling frequency and sampling
point. In addition, even in the case that the local turbulence,
such as tornado, would shield the scattering echo from a tar-
get behind this turbulence, it is considered that the proposed
method would work by exploiting the observable data from
the vicinity area. To confirm the above discussion, it is nec-
essary to investigate the real observation data. It should be
noted that since the literature [13] using the same Ranking
vortex model successfully estimates the actual window field,
it is predicted that the proposed method will also work well
even in realistic scenario.
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