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Gaussian Mixture Model Parameter
Optimization in Range Points

Migration-Based Three-Dimensional
Radar Imaging

Tomoki Ohmori, Shuto Takahashi, and Shouhei Kidera , Member, IEEE

Abstract—Millimeter-wave (MMW) imaging radar is one
of the major environmental sensors in recent self-driving
or driver assistance systems and provides environmentally
robust sensing even in optically challenging conditions. As a
promising three-dimensional (3-D) radar imaging technique,
this study focuses on the range points migration (RPM)
method, which has advantages in terms of accuracy and low
complexity. In the original RPM algorithm, the parameters
are manually or empirically determined by considering the
sensor configurationand target shape or distance.To address
this limitation, we introduced a novel parameter optimization
scheme based on the Gaussian mixture model (GMM) and the
expectationmaximization (EM) algorithm. In addition, we used
the k-space decomposition-based parameter determination scheme to determine target shape-dependent parameter
selection. The results, assuming the human body imaging scenario, showed that our proposed method retains a highly
accurate target image without requiring empirical parameter selection.

Index Terms— Three-dimensional imaging radar, synthetic aperture radar, range points migration (RPM), Gaussian
mixture model (GMM), expectation maximization (EM) algorithm.

I. INTRODUCTION

ADVANCED sensors requiring a highly accurate
three-dimensional (3-D) environmental monitoring

are highly demanded in driver assistance or self-driving
systems, such as for automatic parking or pedestrian collision
avoidance. The microwave or millimeter-wave (MMW)
imaging radar is regarded as an indispensable sensing
technique for environmental sensing, which can be applied
in the presence of optically challenging conditions, such as
dense fog, bad weather, or strong backlight. Many studies
have been conducted to apply MMW imaging radar to
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applications such as human recognition [1]–[4], or human
body screening [5], [6].

Major imaging approaches for the above short-range radar
applications are based on coherent integration-based methods,
such as synthetic aperture radar (SAR) [7], Kirchhoff
migration [8], [9], or range migration algorithm [6], [10],
[11], through which a higher azimuth resolution is achieved
in a higher-frequency signal. Nonetheless, these methods
require sufficiently small intervals of array configuration or
observation points for satisfying the Nyquist criteria to avoid
an ambiguous response due to phase uncertainty. The sparse
regularization scheme known as compressed sensing (CS) is
one of the solutions to the above problem [12], [13]; however,
it has a large computational cost. In addition, the coherent
integration-based method requires an expensive computation
cost to get a fully volumetric image with a small pixel size,
which is preliminarily allocated as a region of interest (ROI),
including all target areas. The acceleration scheme such as
F-k interpolation [14], [15] has been developed, there is an
inherent problem how to determine the ROI area without
prior knowledge of target location or shape.

On the contrary, the incoherent mapping-based radar imag-
ing method has been recently developed, where the discrete
points on the range profile associated with sensor loca-
tion, known as the range points, are solely converted to
their reflection points on the target boundary. Range points
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migration (RPM) [16] is one of these types of methods
and offers accurate, high-speed conversion from the range
point to the reflection point by the weighted kernel density
estimator. Notably, the RPM does not require prior connection
or tracking, even when multiple range points at the same
sensor locations are observed. The effectiveness of the RPM
have been widely demonstrated, assuming the actual human
body imaging with various frequency band radars [17]–[20].
However, the reconstruction accuracy in RPM, that deter-
mines the correlation length of the kernel-based weighting
function, depends on selected parameters. These parameters
must be changed according to the sensor configuration, target
location or structure, which are usually unknown in most
cases. Here, to determine hyper parameters, we introduce the
Gaussian mixture model (GMM)-based parameter optimiza-
tion using the Bayesian framework, particularly via expec-
tation maximization (EM) algorithm [22], that have been
partially introduced in [21], As a significant contribution from
the literature [21], the k-space decomposition scheme [23] is
introduced in the RPM processing to enhance the accuracy and
processing speed, and the correlation length along the sensor
direction is automatically determined by the responses of k-
space, denoting the dominant scattering area of the illuminated
target surface. Consequently, the proposed method enables
us to optimize the RPM imaging parameters using only the
observation data, namely, automatic parameter selection can
be achieve. The numerical tests, using the three-dimensional
simplified human body model, demonstrate that our proposed
method maintains the most accurate results without manually
or empirically parameter adjustment.

II. SYSTEM MODEL

Figure 1 shows a representative observation model, assumed
in this study. Several transmitters and receivers are arranged
on the plane y = 0, and the locations of the transmit-
ter and receiver are defined as LT = (XT , 0, ZT ) and
LR = (X R, 0, Z R), respectively. At each combination,
an electric field is recorded as s̃(LT, LR, R), where R =
ct/2, t is the time, and c is the speed of light. The out-
put of the range extraction filter (e.g., matched filter) is
defined as s(LT, LR, R). Here, we introduce a set of dis-
crete points as q ≡ (LT, LR, R), so-called range point,
which are extracted by the local maxima of |s(LT, LR, R)|
as to R.

III. ORIGINAL RPM METHOD

Here, we briefly describe the methodology of the RPM
method, which is one of the most accurate and lowest
complexity 3-D imaging algorithm. The RPM is based on
incoherent mapping from each range point q i to its solely
associated scattering center p(qi ) via the weighted kernel
density estimator as

p̂(qi ) = arg max
pint(q i ;ql ,qm)∈Pi

�
q j ,qk∈Qi

g(qi ; q j , qk)

× exp

�
−|| pint(q i ; q j , qk) − pint(q i ; ql , qm)||2

2σ 2
r

�

(1)

Fig. 1. Observation model. Planar arrays are located to human body
target.

where pint(qi ; ql , qm) denotes the intersection point of three
spheroids determined by q i , ql , and qm , and σr determines the
standard deviation of the Gaussian function and is empirically
given according to prior knowledge. Pi denotes a set of all
possible intersection points. Qi denotes a set of range points
except for qi . The weight function g(qi ; q j , qk) is defined as:

g(qi ; q j , qk) = |s(q j )| exp

�
− D(q i , q j )

2

2σ 2
D

�

+ |s(qk)| exp

�
− D(q i , qk)

2

2σ 2
D

�
(2)

where |s(q j )| is the value of the local maxima
of |s(LT, j , LR, j , R j )|, and D(q i , q j ) refers to the
three-dimensional Euclidean distance between the sensors of
qi and q j . Although the accuracy in RPM imaging largely
depends on the selected parameters of σD and σr , these
parameters are empirically selected in the original RPM
algorithm.

IV. PROPOSED RPM
A. GMM Model for Estimating Direction of Arrival (DOA)

To automatically determine the parameters in RPM,
we introduced the GMM-based probabilistic density function
estimator and simultaneously optimized their hyperparameters
via the EM algorithm. In this section, we introduce the
GMM-based estimation of the DOA for each RP qi . By
assuming a 3-D model, the PDF for the elevation and azimuth
angles (θ, φ) for qi is modeled as:
P(θ, φ; qi ) ≡

�
q j ,qk∈Qi

δ(θ − θi, j,k, φ − φi, j,k)

× G(qi ; q j , qk) (3)

where δ(θ, φ) expresses the two-dimensional
(2-D) Dirac’s delta function. G(qi ; q j , qk) ≡
g(qi ; q j , qk)/

�
g(qi ; q j , qk) denotes the weight function,

where g(qi ; q j , qk) is defined in Eq. (2). θi, j,k and φi, j,k

denote the elevation and azimuth angles, respectively, which
were determined by the intersection point of pint(qi ; q j , qk)
according to the following relationship:

pint(q i ; q j , qk) =
⎛
⎝ Ri cos θi, j,k cos φi, j,k

Ri sin θi, j,k cos φi, j,k

Ri sin φi, j,k

⎞
⎠

T

(4)
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Thus, the determination of the scattering center p̂(q i ) in
Eq. (1) is equivalent to optimizing a set of θ and φ from the
corrections of θi, j,k and φi, j,k . Here, this method determines
the optimal set of (θ, φ) for each qi by using the following
maximum likelihood (ML) estimate as P(θ, φ, qi ) with the
GMM model as:

(θ̂ML(qi ), φ̂ML(qi )) = arg max
(θ,φ)

K�
k=1

πkN (θ, φ|μk,�k) (5)

where πk denotes the weight, and N (θ, φ|μk,�k) denotes the
2-D Gaussian distribution with the mean μk and the covariance
matrix �k . Subsequently, the parameter optimization problems
of σr in Eq. (1) could be converted to those for optimizing the
covariance values in the GMM model denoted as �k .

B. EM Algorithm for σr Optimization
To solve the optimization in Eq. (5), we used the EM

algorithm in the Bayesian framework, and the set of hyper
parameters as (M,�) are simultaneously optimized with the
ML solution, where M ≡ (μ1, μ2, . . . , μK ) and � ≡
(�1,�2, . . . , �K ). Here, we briefly describes the EM algo-
rithm, which recursively conducts the following E and M
steps. Introducing � ≡ (θ1, . . . , θN ) and � ≡ (φ1, . . . , φN ),
X = (�,	) set as the observed data and Z as the unobserved
latent data, the ML estimate is determined by maximizing the
following marginal likelihood L(M,�) as:

L(M,�) =



p(X, Z|M,�)dZ (6)

The EM algorithm iteratively finds the ML estimate by the
following two steps:

Let M(n) and �(n) be the estimates of M and �, respec-
tively, at the n-th iteration. E step): Taking the expectation
value of the log likelihood function as:
Q(M(n),�(n)) =

�
Z

p(Z|M(n),�(n))

× log p(X, Z|M(n),�(n)) (7)

M step): Determining the hyper parameters maximizing the
following functions as:

(M(n+1),�(n+1)) = arg max
(M,�)

Q(M,�|M(n),�(n)) (8)

Then, we obtain the ML estimate of the DOA of
(θ̂ML(q i ), φ̂ML(qi )) in Eq. 5 with optimized hyper parameters
(M̂, �̂). Figure 2 shows the schematic image in converting
the corrected samples to the PDF with GMM model and EM
algorithm. It is noteworthy that the optimized hyper parameters
�̂ should be equivalent to the σr parameter introduced in
Eq. (1), which is invariant to the selected range point qi . Thus,
the proposed scheme, but can offer an appropriate parameter
for each range point q i , which has been determined by the
stochastic profiles of the distribution of (�,	).

C. Optimization of σD by k-Space Data Decomposition
While the above GMM and EM scheme provides the

optimization of σr in Eq. (1), σD still needs to be determined
to calculate G(qi ; q j , qk) in Eq. (2). Here, we introduce σD

Fig. 2. PDF generation by GMM and EM algorithm.

scheme by exploiting the k-space decomposition algorithm as
in [23]. First, the methodology for k-space decomposition in
the RPM scheme is briefly described as follows. Focusing on
one transmitter, the planar array or scanning on the y = 0
plane is assumed, each receiver location is redefined as LR ≡
(X, 0, Z) and the output of the range extraction filter is also
redefined as s(X, Z , R; LT). Then, the 2-D Fourier transform
converts the data s(X, Z , R; LT) to kx,z-space as:
S(kx , kz, R; LT)

=



LR∈�

s(X, Z , R; LT)e− j (kx X+kz Z)d Xd Z , (9)

where 
 denotes the area of the receiver array. Next, the k
associated range points are extracted as qk

m ≡ (k̃x,m ,k̃z,m , R̃m):

∂|S(kx , kz, R; LT)|/∂kx = 0
∂|S(kx , kz, R; LT)|/∂kz = 0
∂|S(kx , kz, R; LT)|/∂ R = 0

⎫⎬
⎭ . (10)

The decomposition in the kx and kz spaces is equivalent
to that in the elevation and azimuth angle of arrival. This
method has a definitive advantage that it could decompose
the multiple responses from multiple targets within the same
gate range and offers robustness against noise owing to the
coherent integration process, compared with other super-range
resolution techniques, such as Capon, MUSIC, and CS, which
has been demonstrated in [23]. In addition, the responses in
kx -kz space reveal significant information to determine σD in
the sequential RPM process. Figure 3 shows the relationship
between various curvature targets and k-space responses, indi-
cating that the k-space responses become narrower in the case
of a large plate, namely, the infinite radius of curvature, and in
the case of a point target, i.e., nearly zero radius of curvature,
its response becomes wider. In addition, Fig. 4 shows the
relationship between the target with small and large curvature
radii and scattering center points, indicating that σD should be
a smaller in the case of smaller curvature radius, because the
scattering center would be closely located to the intersection
points depicted by the two circles, and vice versa. According
to the above discussion, we determine an appropriate σD for
each axis X and Z , denoted as σDX and σDZ , based on the
k-space responses according to the following equation:

σ̂DX(qk
m) = |�kmax − �kmin|

|�kx(qk
m) − �kmin|

σ̂DZ(qk
m) = |�kmax − �kmin|

|�kz(qk
m) − �kmin| (11)

(12)
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Fig. 3. Relationship between target size (curvature radius (CR)) and k-
space profile. (a)-(c): Observation model. (d)-(e): Range-k space profile.
(g)-(i): Cross-sectional k-space image at the distance of 1000 mm.

Fig. 4. Relationship between curvature radius and k-space profile.
PI denotes the point of intersection of two spheres depicted by qi and qj.
SC denotes the scattering center point associated with qi.

where �kx(qk
m) and �kz(qk

m) denote the spread value
of |S(kx , kz, R; LT)| with the center of qk

m along the
kx and kz axes, respectively. Moreover, �kmin and
�kmax indicate the spread value in the k-space assum-
ing the point target (CR = 0 mm) and plate target
(CR = ∞), as shown in Fig. 3.

Finally, for each extracted k-space associated range point as
qk

m , the GMM based RPM converts its scattering center point
as p̂(qk

m), where g(qi ; q j , qk) used in Eq. (2) is updated as:
g̃(qk

i ; qk
j , qk

k )

= +s(qk
j )

�
exp

�
− DX (qk

i , qk
j )

2

2σ̂DX(qk
i )

2

�
+exp

�
− DZ (qk

i , qk
j )

2

2σ̂DZ (qk
i )

2

��

+ s(qk
k )

�
exp

�
− DX (qk

i , qk
k )

2

2σ̂DX(qk
i )

2

�
+exp

�
− DZ (qk

i , qk
k )

2

2σ̂DZ(qk
i )

2

��

(13)

where DX (qi , q j ) and DZ (qi , q j ) denote the Euclidean dis-
tance between the sensor locations in q i and q j along
the x and z axes, respectively. Using this method, σDX

and σDZ can be automatically determined by the profile of
|S(kx , kz, R; LT)|.

Fig. 5. Flowchart of the proposed method.

D. Procedure of Proposed Method
The procedure of the proposed method can be summarized

as follows.
Step 1) The observed data recorded at each transmitter

and receiver combination, is processed by range
extraction filter, and s(LT, LR, R) is acquired.

Step 2) For each LT, s(X, Z , R; LT) is converted to
S(kx , kz, R; LT) in Eq. (9) and qk

m is extracted from
Eq. (10).

Step 3) σ̂DX(qk
m) and σ̂DZ(qk

m) are determined in Eq. (11),
and g̃(qk

i ; qk
j , qk

k ) is updated in Eq. (13).

Step 4) For each qk
m , (θ̂ML(qk

m), φ̂ML(qk
m)) is determined

in Eq. (5, namely, the GMM based RPM is applied,
where a hyper parameter set μk and �k are auto-
matically determined by the EM algorithm. Then, its
scattering center point is calculated as

p̂(qk
m) ≡

⎛
⎝ Rm cos θ̂ML(qk

m) cos φ̂ML(qk
m)

Rm sin θ̂ML(qk
m) cos φ̂ML(qk

m)

Rm sin φ̂ML(qk
m)

⎞
⎠

T

Figure 5 shows the procedure of the proposed method.

V. NUMERICAL TESTING

A. Numerical Setting
In this section, the 3-D numerical tests are demonstrated to

validate the effectiveness of our method. Figure 1 also shows
the simulation model, where a human body target is composed
of 11 ellipsoids. Note that, this simulation model is introduced
in numerous studies [18], [23]. This model enables us to assess
an imaging result in a strictly quantitative manner, which is
hardly obtained from a real human body [20]. The transmitted
source current forms a pulse modulated sinusoidal wave with
a center frequency of 20.0 GHz (wavelength, 15mm) and
bandwidth of 3.0 GHz (range resolution, 50 mm). Since we
assume the MMW radar system, reflection data are gener-
ated via geometrical optics (GO) approximation [24], namely,
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Fig. 6. k-space profiles at each distinguished range. Red denotes the extracted point as (k̃x,m, k̃z,m, R̃m).

the ray-tracing method, because we deal with an object whose
size is considerably larger than the wavelength of the MMW
band. The GO is known as one of the most promising forward
solvers for the high-frequency electromagnetic propagation
model, where each propagation path is calculated by the
law of reflection with propagation loss. Nonetheless, in the
GO analysis, an interference effect among multiple objects is
considered, while the effect of multiple scattering is ignored.
Here, the SIMO model is introduced, and 25 × 25 receivers
with 2/3 wavelength arranged on the y = 0 plane are defined
with a spacing of 10 mm. One transmitter is located at the
center of this planar array, as shown in Fig. 1. To assess the
noise-robustness of each method, the Gaussian white noise is
added to a received signal in the time domain, and the S/N
ratio is defined as the ratio of the instantaneous peak signal
power of the data to the average noise power.

B. Case in the Absence of Noise
First, we tested the reconstruction performances in a

noise-free situation to assess the systematic error of each
method. Figure 6 shows the number of k-space profiles at
each range and extracted the k associated range points qk

m
in Eq. 10. This figure demonstrates that the k-space decompo-
sition approach separates responses from 11 ellipsoid objects
and contributes obtaining a highly accurate profile of range
points, as shown in Fig. 7. Figure 8 shows the reconstruction
results obtained by the method reported in [23] and the
proposed method. Note that the method presented in [23] uses

Fig. 7. Extracted range points profile after k-space decomposition. Each
color of dots present a clustered number in k-space.

the RPM algorithm denoted in Eqs. (1) and (2), assuming that
σr = 1 mm and σD = 30 mm. This figure shows that this
method offers a certain level of reconstruction accuracy due
to the k-space decomposition, but fluctuations occur for each
body part in the RPM reconstruction points, p̂(qi ). While this
fluctuation could be suppressed by changing the parameters σr

and σD , it is impractical to determine an optimal combination
of these parameters at the initial stage without prior knowledge
of the target shape or distribution, which is the main issue
discussed in this study. On the contrary, the proposed method
shown in Fig. 8 offers a more accurate reconstruction image
by introducing the GMM and EM algorithm based parameter
optimization for σr and k-space profile based determination of
σDX and σDZ . Here, the number of Gaussian kernels denoted
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Fig. 8. Reconstruction results obtained by the method [23] and the proposed method, at S/N = ∞.

Fig. 9. Reconstruction results obtained by the method [23] and the proposed method, at S/N = 5 dB.

as K in Eq. (5) is set to 200. Notably, the computational times
of the method [23] and proposed method are 250 s and 730 s,
respectively, using an Intel(R) Xeon(R) Silver 4110 CPU @

2.10GHz with 128 GB RAM, However, the proposed method
required additional computational expenses, particularly with
respect to optimization of the hyper parameters for each range
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Fig. 10. Box plots for reconstruction accuracy of the RPM imaging
at each S/N level. Red line denotes the median. Upper and lower
boundaries denote lower and upper quartile, respectively. Upper and
lower whisks denote maximum and minimum values, respectively. Red
cross points are outlier over the whisks.

point. It is possible to reduce these costs, e.g., by decreasing
the number of Gaussian kernels or samples in the GMM
generations.

C. Case in the Presence of Noise
The above effect is clearer in a noisy situation. Here,

we tested a low signal-to-noise (SNR) ratio as S/N = 5 dB.
Here, SNR is defined as the ratio of peak intensity to the
average noise power of a signal recorded in the time domain,
i.e., data before the Doppler or RMA processing. These SNRs
for all transmitter and receiver combinations are averaged.
Moreover, SNR is defined at each slow time and not related to
a coherent integration process along the slow time or the aper-
ture array. Figure 9 shows the reconstruction results for each
method in this SNR case. The method used in [23] uses σr =
1 mm and σD = 30 mm, which is the same in the noiseless
case. These results demonstrated that the exiting method in
[23] suffers from inaccuracy due to random noise, and image
fluctuations are more critical compared to noise-free situation.
However, the proposed method maintains its accuracy even
in this case, because the GMM and EM algorithm could
dynamically change an appropriate parameter about σr . Note
that, the proposed method determines a different optimized
parameter set as μk,�k for each range point, which is constant
in the method used in [20].

TABLE I
PARAMETER SETS FOR EACH CASE IN THE METHOD [23]

TABLE II
CLUSTERING INDEXES FOR EACH PART OF HUMAN BODY

Fig. 11. RMSE plots for each part of human body at each S/N level.
Red dots denote the proposed method. The colors of blue, purple, and
green denote the case of σD = 10 mm, σD = 30 mm, and σD = 240
mm, respectively. The mark types of triangle, square, circles denote the
case of σD = 1 mm, σD = 10 mm, and σD = 100 mm, respectively.

D. Quantitative Error Analysis
As a statistical error analysis, Fig. 10 illustrates the box

plot of the reconstruction errors in the RPM imaging results
at each SNR level. Here, nine combination patterns of σr

and σD in the method [23] were investigated, where each
parameter set is summarized in Table I. The reconstruction
error, namely the vertical axis in Fig. 10, is defined as the
minimum distance between each true ellipsoidal boundary and
reconstruction point, p̂(qi ). The lower and upper bounds of
the boxes spanned the interquartile range (IQR). The lower and
upper whisks indicate the ±2.7 standard deviation range, while
the red crosses, in Fig. 10, were regarded as outliers. Figure 10
shows that the selected parameters determine the outcomes
in the method [23]. Furthermore, inappropriate selection of
these parameters generates significant outliers (the red crosses
in Fig. 10), particularly in the case of 1, 4, and 7, both
in noiseless and noisy situations. Conversely, the proposed
method offered the same level of accuracy as that obtained
in case 3, which was the most accurate result in the method
[23]. Notable, compared with other cases, the proposed method
reduced the number of outliers using only the observed data
without the requirement for prior knowledge or empirical
testing. In addition, we investigate the error analysis for each
part of human body, which are separately reconstructed by the
k-space decomposition. Table II indicates clustering indexes
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for 11 ellipsoidal part of human body. Figure 11 shows the
RMSEs for each body part, where the 9 types of parameter
combination as in Table I are investigated in the method [23].
This figure also demonstrates that our proposed method retains
lowest RMSEs for most parts of human body, and revealed
that our method provides an optimal performance of the
RPM method without using a prior knowledge or empirically
selections of the parameters.

VI. CONCLUSION
We introduced a data-driven parameter optimization scheme

for 3-D short-range radar imaging using he unique feature of
the RPM imaging and k-space decomposition. The accuracy
of the existing RPM method like [20], [23] has an inherent
problem that its accuracy significantly depends on the selected
parameters, which are usually empirically determined. Thus,
the proposed method introduced the automatic optimization
scheme using EM algorithm-based hyperparameter optimiza-
tion, where the distribution of intersection points is modeled
by the GMM. The optimal azimuth and elevation angles of
the reflection point are determined by the MLEM framework,
and the mean and variances of each Gaussian distribution
are simultaneously determined, indicating that our method
individually selects the optimization parameter for each range
point. In addition, by focusing on the relationship between the
k-space profile and curvature radius of the target shape, σD is
analytically determined by k-space responses. The GO-based
numerical tests, assuming the MMW SIMO radar system,
demonstrated that our proposed method retains a maximum
performance of the 3-D image reconstruction, which is the
same level as that obtained by the method used in [23] with
manually tuned parameters. This approach can be extended to
other similar problems, such as Doppler velocity estimation
in [25]. Furthermore, the numerical test assumes a short-range
scenario where the distance from the radar to human body is
1 m, while assuming the wavelength of the transmitted pulse
as 15 mm; it is a completely far-field scenario. Considering a
more far-field situation required for automotive radar, such as
5 or 10 m, the aperture angle becomes smaller with the same 2-
D array size, and the range points accumulate more intensively
within the range resolutions, compared with the case in Fig. 7.
Thus, the original or proposed RPM is subject to range
point errors owing to the interference effect, even when using
k-space decomposition. Regarding parameter optimization,
assuming a farther-field case, the actual scattering center may
accumulate at a representative reflection point of each human
body, i.e., this needs to handle objects with high curvature.
Therefore, the sensitivity of the selected parameters of σD

or σr is more remarkable in the original RPM. In contrast,
the proposed RPM takes into account the k-space responses
or cumulative degree of intersection points to determine the
appropriate parameters of the GMM model, σDX , or σDY and
mitigate the RPM imaging errors, even in far-field cases. The
above mentioned investigation will be our important future
work.
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