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Ambiguity Free Doppler Velocity Decomposed
Imaging Method for 79 GHz Band Millimeter

Wave Radar
Yoshiki Sekigawa and Shouhei Kidera, Senior Member, IEEE

Abstract— This paper proposes an accurate Doppler
velocity–associated radar imaging method for millime-
ter wave short-range radar. Doppler velocity–based
data decomposition is promising in terms of en-
hancing the spatial resolution of radar images, espe-
cially for multiple objects with different motion veloc-
ities, e.g., human walking models. However, the tra-
ditional short-time Fourier transform (STFT) or other
time–frequency analysis methods inherently suffer
from inaccuracy due to a limited unambiguous veloc-
ity range or the trade-off between temporal and fre-
quency resolutions. To address this problem, the pro-
posed method incorporates time-of-flight (TOF) based
Doppler velocity estimation, i.e., the weighted kernel
density (WKD) method, which overcomes the limita-
tions of unambiguous velocity range and the trade-
off between temporal and frequency resolutions in the Doppler velocity decomposed and associated radar imaging.
Experimental results obtained using 79-GHz band MMW radar equipment demonstrate the effectiveness of the proposed
method for two use cases, i.e., multiple rotating spheres and a human walking model.

Index Terms— 79 GHz millimeter wave (MMW) band radar, multiple-input-multiple-output (MIMO) radar, Doppler associ-
ated radar imaging, Weighted kernel density estimator (WKD), Micro-Doppler velocity estimation, Human body imaging.

I. INTRODUCTION

With the increasing prevalence of self-driving and ad-
vanced driver assistance systems (ADAS) , developers have
introduced various environmental sensors. For example, high-
frequency millimeter wave (MMW) radar is a cutting-edge
sensing technique that boasts numerous advantages, e.g., high
spatial resolution and compact modules [1], [2]. MMW radar
also shows promise as an environmentally robust sensor that
is applicable in situations where optical visibility is severely
limited, e.g., dense smog or adverse weather conditions.
Despite these advantages, MMW radar imaging faces chal-
lenges in terms of spatial resolution limitations imposed by
the aperture size. This limitation is problematic in vehicle-
mounted radar systems because the aperture size cannot be
expanded considerably because a target, e.g., a pedestrian
or car, should be positioned in front of the radar. In far-
range sensing cases exceeding 10 m, the aperture angle
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becomes critically small, which makes it difficult to achieve
the required spatial resolution for effective object recognition.

Several radar imaging schemes assuming the MMW multi-
input-multi-ouput (MIMO) observation model employ a co-
herent integration (CI) approaches like the Kirchhoff mi-
gration [3], [4], the range migration algorithm (RMA) [5]–
[8], and sparse regularization schemes [9]–[12]. However,
these methods face challenges due to limited spatial res-
olution, which would be more critical in situations with
small aperture angles, as assumed in the frontline sensing
scenario in automotive radar. To address with the above-
mentioned issue, a number of studies have been developed
focusing on the micro-Doppler velocity analysis [13]–[16]
for the human body or gait level recognition via the machine
learning approaches [17]–[19]. However, there are a limited
number of studies focusing on Doppler-associated radar
imaging schemes like [13], while a greater number of studies
have focused on enhancing the equivalent range resolutions
through Doppler spectra decomposition [20]. A recent study
[21], [22] introduced the Doppler velocity decomposed CI
imaging approach focusing on the advantages of the higher
MMW band, e.g., the 79 GHz band, which can offer much
higher Doppler velocity resolution, even with a short coherent
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processing interval (CPI). This further enhances the equiv-
alent spatial resolution when dealing multiple objects with
different motion velocities, e.g., the human walking motion.

Thus, in this paper, we introduce a Doppler velocity
decomposed radar imaging scheme. Note that the previ-
ous method [21], [22] employs short-time-Fourier trans-
form (STFT)-based time–frequency analysis to estimate the
Doppler spectra, which are associated with radar images.
However, these Doppler velocities are inherently limited
within an unambiguous Doppler velocity range, which is
strictly determined by the pulse repetition interval (PRI)
under the Nyquist condition. Thus, if a sufficiently short
PRI cannot be acquired in the actual radar module, it would
be difficult to estimate the Doppler velocity for moving
objects with a velocity greater than the unambiguous Doppler
velocity. This scenario could occur in a human walking
model. For example, assuming a 79-GHz MMW with a PRI
of 10 ms, the unambiguous velocity should be ±0.1 m/s,
which is considerably less than the actual motion of each
body part (arm or leg) with over 1.0 m/s velocity.

To address the above-mentioned issue, this study intro-
duces a novel scheme by combining a weighted kernel den-
sity (WKD) Doppler velocity estimator [23] and the Doppler
decomposed radar imaging [22] to retain accurate Doppler
velocity associated imaging, especially for a walking human
model. The WKD method [23] converts the discrete time-
of-flight (TOF) values associated with slow time as τ , the
so-called range-τ points, to the Doppler velocity points using
a kernel density-based probability density function estimator,
and it offers several distinct advantages. For example, there is
no limitation on the Doppler velocity and temporal resolution
or the unambiguous velocity range because the Doppler
velocity is defined simply by the inclination of neighboring
range-τ points. In addition, the challenging procedure to
connect multiple range-τ points can be avoided by evaluating
all range-τ points with a weighting function, which allows for
batch processing. We associate the point cloud-based WKD
outputs with the decomposed distributed radar image in the
proposed method by focusing on the distinct advantages of
the WKD method. This method enhances the accuracy of
the Doppler velocity estimation because it is free from the
limitation of unambiguous range. Notably, previous studies
have used the WKD method [24], where the range points mi-
gration (RPM) [25] radar imaging scheme was incorporated;
however, the RPM image cannot retain sufficient angular
resolution at the higher frequencies, such as in the 79 GHz
band, because it is based on an incoherent integration process.
Thus, it is necessary to integrate a CI-based radar image with
the WKD based Doppler velocity estimator to achieve both
high spatial resolution imaging and ambiguity-free Doppler
velocity estimation.

Thus, the primary contributions of this study are summa-
rized as follows.

1) The Doppler decomposed and associated radar imaging
scheme contributes to higher resolution and multi-
functional imaging, which is beneficial for human

Fig. 1: Observation model.

walking models with micro-Doppler components in
each part.

2) The WKD based Doppler velocity estimation over-
comes the limitation of the unambiguous velocity
range, which is strictly determined by the PRI and
the wavelength in the traditional STFT based Doppler
analysis scheme used in [22].

3) Experimental tests using three rotating spheres and a
real human walking model demonstrate that accurate
and high spatial resolution radar imaging associated
with Doppler velocity can be realized using a com-
mercial 79-GHz frequency modulated continuous wave
(FMCW) MIMO radar module.

II. METHOD

A. Observation Model

The observation model employed in the proposed method
is shown in Fig. 1. Here, we assume MIMO radar imaging,
and multiple transmitters and receivers are located in a planar
array, placed on the y = 0. Then, the locations of the
transmitter and receiver are defined as rT = (xT, 0, zT)
and rR = (xR, 0, z), respectively. The modulated pulse is
transmitted repeatedly with a constant PRI, and a slow time
τ is indexed by the PRI. In addition, s(rT, rR, R, τ) is
defined as the complex scattered signal at each transmitter
and receiver combination, where R = ct/2 holds with the
fast time t and the radio-wave speed c. If a complex electric
field as s(rT, rR, R, τ) can be observed, either pulse-Doppler
radar or FMCW radar systems are applicable to the proposed
method. Furthermore, the s(rT, rR, R, τ) is truncated along
slow time τ for post-Doppler analysis with a CPI, and is
defined as s(rT, rR, R, τ ; τm), where τm denotes the center
of each CPI.

B. Conventional Doppler Velocity Decomposed Radar
Imaging

In the case of vehicle-mounted radar, the available aperture
size of the array is frequently limited to maintain a sufficient
azimuth resolution, which is a challenging issue in several
cases, e.g., when decomposing each part of the human body
in short-range scenarios. To address this difficulty, our pre-
vious study [21], [22] introduced the Doppler decomposition
based radar imaging, to retain interference-robust and multi-
functional radar imaging. Here, we briefly introduce the
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methodology as follows: In the first step, the measured data
as s̃(rT, rR, R, τ ; τm) are converted to the R− vd space by
the 1D FT as follows:

S(rT, rR, R, vd; τm) =

∫
T

s̃(rT, rR, R, τ ; τm)e−jωτdτ,

(1)

Here, T denotes the CPI, and vd = ωλ/4π is defined,
where λ denotes the wavelength of the center frequency of
the transmitted pulse. Focusing on the R − vd space, the
discrete points, defined as ζ(m,n) ≡ (R̃(m,n), v

(m,n)
d ), can be

extracted from the local maxima of S(rT, rR, R, vd; τm) as:

∂|S(rT, rR, R, vd; τm)|/∂R = 0
∂|S(rT, rR, R, vd; τm)|/∂vd = 0
|S(rT, rR, R, vd; τm)| ≥ α max

(R,vd)
|S(rT, rR, R, vd; τm)|

 .

where α is the threshold parameter with 0 ≤ α ≤ 1 and n
denotes the index number of the local maxima. By using the
following filtering process in the R-vd space, the Doppler
decomposed data for each ζ(m,n) is obtained as:

s̃(rT, rR, R, τ ; ζ(m,n))

=
1

2π

∫
W (R, vd; ζ

(m,n))S(rT, rR, R, vd; τm)ejωτdω. (2)

where W (R, vd; ζ
(m,n)) is the windowing filter in the R-vd

space.

Then, for the n-th clustered data as
s̃(rT, rR, R, τ ; ζ(m,n)), the coherent integration (CI)
based radar imaging process is applied, to provide the vd
associated radar image [22] as :

I(r, τ ; ζ(m,n)) =
∑
rT,rR

w(rT, rR)

×
∫ ∞

−∞
S̃(rT, rR, ω, τ ; ζ

(m,n))G∗
R(ω, r, rR)G

∗
T(ω; rT, r)dω

(3)

where S̃(rT, rR, ω, τ ; ζ
(m,n)) denotes the 1D FT of

s̃(rT, rR, R, τ ; ζ(m,n)) in terms of t via the relationship of
t = 2R/c. Here, GT(ω; rT, r) and GR(ω, r, rR) denote the
Green’s functions defined as from the transmitter position
rT to the imaging point r and the imaging point r to
the receiver position rR, respectively. Under the condition
of a homogeneous background, these Green’s functions are
expressed as: GT(ω; rT, r) ≃ exp

(
j ω
cB
∥r − rT∥

)
and

GR(ω; r, rR) ≃ exp
(
j ω
cB
∥rR − r∥

)
, where cB denotes

the propagation speed in the air. Notably, w(rT, rR) is the
weight term for the element location, which is expressed as:

w(rT, rR) = exp

{
−∥r(rT, rR)− rC∥2

2σ2
array

}
(4)

where rC is the center location of the equivalent array. Here,
σarray is set to an aperture length for an equivalent array, and
the weight term w(rT, rR suppresses the sidelobe effect in
radar imaging, although its cross-range resolution is reduced.

Fig. 2: Doppler estimation scheme using WKD method.

This method [22] realizes a high spatial resolution and
vd associated radar imaging, which contributes to multi-
functional imaging for complex shaped and partially moving
objects, e.g., pedestrians and cyclists. However, the associated
Doppler velocity vd is determined by the STFT given in
Eq. (1); thus, there is a trade-off between the temporal and
velocity resolution, and there is an inherent limitation in
terms of the unambiguous velocity range determined by the
Nyquist criteria. In particular, assuming a human walking
model, the velocity range required to track each body part
(e.g., legs or arms) should exceed 2.0 m/s. This, for example,
necessitates a PRI of less than 0.5 ms when using a 79-GHz
band MMW radar. However, achieving such PRI levels is
challeging in general MIMO MMW radar models, as because
the number of pulse sequences for each transmitting pulse
increases the lower boundary of the PRI. In addition, the
obtained Doppler velocity is averaged over the CPI, i.e.,
the temporal resolution, and cannot track velocity changes
during the CPI, which is critical for tracking each part
with pendulum motion in the walking model. Note that
these limitations have been demonstrated or discussed in the
literature [22].

C. Proposed Doppler Velocity Associated Radar
Imaging

1) Weighted Kernel Density Estimation (WKD) Method: To
address the aforementioned problem, the proposed method
integrates the WKD-based Doppler velocity estimation [23]
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Fig. 3: Schematic diagram of the proposed method.

with the vd decomposed radar image I(r, τ ; ζ(m,n)). First,
we provide a brief overview of the WKD methodology.
The WKD method leverages an incoherent transformation
from the TOF point cloud data to the associated Doppler
velocity and effectively addresses the limitations inherent in
Fourier-based Doppler analysis. Here, we define the range-τ
points as q

(m,n)
i,j ≡ (r

(m,n)
T,i,j , r

(m,n)
R,i,j , R

(m,n)
i,j , τ

(m,n)
j ), which

are extracted from the local maxima of the vd decomposed
data |s̃(rT, rR, R, τ ; ζ(m,n))| as:

∂|s̃(rT, rR, R, τ ; ζ(m,n))|
∂R

= 0 (5)

|s̃(rT, rR, R, τ ; ζ(m,n))| ≥ βmax
R,τ

|s̃(rT, rR, R, τ ; ζ(m,n))|

(6)

where β expresses the threshold with 0 ≤ β ≤ 1. Here, in
the definition of q

(m,n)
i,j , the subscript i represents the i-th

slow time snapshot at τi, the subscript j expresses the index
number of the extracted range-τ points at each τi, and the
superscript (m,n) denotes that it belongs to the n-th cluster
in the vd decomposition process in the m-th CPI.

Focusing on the inclination value between the two
range-τ points denoted as q

(m,n)
i,j and q

(m,n)
k,l , an in-

stantaneous Doppler velocity is incoherently defined as
vd(q

(m,n)
i,j , q

(m,n)
k,l ) ≡ (R

(m,n)
i,j −R

(m,n)
k,l )/(τ

(m,n)
i − τ

(m,n)
k ).

Using some of these possible Doppler velocities vd(q
(m,n)
i,j ),

the optimal Doppler velocity for the focused range-τ point

as q
(m,n)
i,j is determined as:

ṽd(q
(m,n)
i,j ) = arg max

vd

∑
k,l

exp

(
−

∣∣|s̃(q(m,n)
i,j )| − |s̃(q(m,n)

k,l )|
∣∣2

2σ2
s

)

× exp

(
−
∣∣τi − τk

∣∣2
2σ2

τ

)
exp

(
−
|vd − vd(q

(m,n)
i,j , q

(m,n)
k,l )|2

2σ2
vd

)
, (7)

where |s̃(q(m,n)
i,j )| expresses the signal strength, namely,

|s̃(rT, rR, Ri, τj ; ζ
(m,n))|. In addition, σs, στ , and σvd are

constants, and their roles are described in detail in the
literature [23].

The WKD has a notable advantage in that the optimized
Doppler velocity ṽd(q

(m,n)
i,j ) can be provided at each slow

time τi, which means that the temporal resolution of WKD
is identical to that of the PRI. In addition, as a candidate, the
Doppler velocity is determined via an inclination by a pos-
sible combination of range-τ points as vd(q

(m,n)
i,j , q

(m,n)
k,l ),

vd(q
(m,n)
i,j , q

(m,n)
k,l ), and there is no limitation in terms of the

velocity resolution and the unambiguous velocity range, that
has been demonstrated in [23]. Notably, although the WKD
method could be integrated into the RPM-based imaging
scheme, the RPM cannot retain sufficient angular resolution
in the MMW band, such as at 79 GHz, due to incoherent
processing.

2) Integration WKD and CI: To integrate a high-resolution
Doppler-decomposed CI image with a WKD-based Doppler
estimator, this study introduces a novel integration scheme
for combining CI imaging with the WKD method as follows.
The WKD method provides point cloud outputs denoted as
ṽd(q

(m,n)
i,j ), which needs to be effectively associated with the

synthesized, distributed CI image. To achieve this association,
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the most reliable Doppler velocity is selected from all the
available points ṽd(q

(m,n)
i,j ) within the cluster ζ(m,n). Specif-

ically, the WKD point cloud data, ṽd(q
(m,n)
i,j ), and the vd

decomposed radar image as I(r, τ ; ζ(m,n)) are integrated via
the cluster vector ζ(m,n). The representative Doppler velocity
v̂
(m,n)
d for each cluster is derived from ζ(m,n) as

v̂
(m,n)
d = ṽd(q̂

(m,n)) (8)

q̂(m,n) = arg max
q(m,n)

i,j

F
(
q
(m,n)
i,j

)
(9)

where F
(
q
(m,n)
i,j

)
denotes the maximized evaluation func-

tion for q
(m,n)
i,j , i.e., the left hand side of Eq. (7). Then,

the Doppler velocity decomposed radar image in Eq. (3)
is updated as I(r, τ ; v̂

(m,n)
d ) using the WKD determined

v̂
(m,n)
d ). It is worth noting that this method offers a dis-

tinct advantage as the high-resolution CI radar image can
be seamlessly integrated with the ambiguity-free Doppler
velocity estimation obtained from the WKD. This approach
effectively combines the strengths of coherent (STFT) and
incoherent (WKD) processes. Even if aliasing effect occurs
in the STFT based Doppler decomposition, it does not
affect the post-WKD-based velocity estimation, as the WKD
itself relies only on the magnitude of the range-τ responses,
expressed as |s̃(q(m,n)

i,j )|. This capability addresses a funda-
mental limitation of the conventional STFT-based approach
[22]. Furthermore, by analyzing the point cloud ṽd(q

(m,n)
i,j )

within ζ(m,n), we can examine the temporal variations of the
Doppler velocity within the CPI. This is possible because the
WKD provides instantaneous Doppler velocity measurements
for each pulse hit, allowing the temporal resolution to be
reduced to a single PRI. Figure 3 presents a conceptual
diagram that illustrates the proposed method, where the point
cloud outputs of the WKD are associated with the radar
images for each cluster ζ(m,n).

3) Processing Flow of Proposed Method : The detailed
procedure of the proposed method is described as follows:

Step 1): The received signals s(rT, rR, R, τ) are processed
by a matched filter as s̃(rT, rR, R, τ).

Step 2): s̃(rT, rR, R, τ) is then truncated with a certain
CPI as T at the center slow time τm, and
s̃(rT, rR, R, τ ; τm) is obtained.

Step 3): S(rT, rR, R, vd; τm) is calculated by applying the
1D DFT to s̃(rT, rR, R, τ ; τm) using Eq. (1).

Step 4): ζ(m,n) is extracted from the local maxima of
|S(rT, rR, R, vd; τm)| using Eq. (2), and its inverse
Fourier transform s̃(rT, rR, R, τ ; ζ(m,n)) is calcu-
lated in Eq. (2).

Step 5): For the n-th cluster in the m-th CPI, the range-τ
points q

(m,n)
i,j are extracted using Eq. (6).

Step 6): Focusing on the specific range-τ point as q
(m,n)
i,j ,

the optimal Doppler velocity ṽd(q
(m,n)
i,j ) is obtained

Fig. 4: Flowchart of the proposed method.

using the WKD method as given in Eq. (7).

Step 7) : Radar imaging processing in Eq. (3) is applied to
each cluster data s̃(rT, rR, R, τ ; ζ(m,n)). In addi-
tion, a representative Doppler velocity v̂

(m,n)
d is

determined using Eq. (9), which is obtained as the
Doppler associated radar image as I(r, τ ; v̂

(m,n)
d ).

Step 8) : τm is changed to τm+1 and the Steps 2) to 7) are
repeated.

Step 9) : I(r, τ ; v̂(m,n)
d ) are calculated for all τm.

In each CPI, the proposed method generates n different radar
images as I(r, τ ; v̂(m,n)

d ), which are associated with different
Doppler velocities v̂

(m,n)
d . Fig. 4 shows a flowchart of the

proposed method.

III. RESULTS

A. Experimental Setting

The proposed method was validated experimentally. In
this evaluation, a radar module with a 79-GHz band FMCW
MIMO radar device (produced by Sakura Tech Corp) with
4.0 GHz bandwidth (37.5 mm range resolution) acquired
data with pulse sequences, as shown in Fig. 5. Here, six
transmitters (output power: 10 dBm) and eight receivers were
used to configure a planar MIMO array, where its center
position, defined as the origin (x, y, z) = (0, 0, 0), was set
to 715 mm above the floor. The antenna beam widths that
defined the field of view, were ±10◦ and ±45◦ for the
vertical and horizontal axes, respectively. This configuration
was chosen to enable 2-D cross-sectional imaging on the
azimuth plane, as determined by the radar height (z = 715
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(a) Array configuration

(b) Observation geometry

Fig. 5: Experimental setup in rotating spheres model.

mm). Thus, the radar receives reflection echoes exclusively
from the region that is at the same height as the radar,
effectively suppressing clutter that originates from different
heights. The real and virtual array arrangement is shown
in Fig. 5, where the horizontal and vertical dimensions of
the equivalent array were 62 mm and 4.8 mm, respectively,
i.e., the azimuth and elevation angular resolutions were 1.82
and 44.68 degrees, respectively. Note that the vertical beam
width was narrowed sufficiently (i.e., 10 degrees), and the
target was located at a distance of approximately 1 m; thus,
we extracted the cross-sectional image of I(r, τ ; v̂

(m,n)
d ) at

a radar height of approximately −100mm ≤ z ≤ 100mm,
thereby representing a quasi-2D imaging problem.

B. Case for Rotating Three Metallic Spheres
First, an experimental case involving the rotation of mul-

tiple spheres was investigated. This simplified object model
allowed us to evaluate the localization or velocity estima-
tion errors in the quantitative mean. Fig. 5-(b) shows the
observation geometry used in this case. The three metallic
spheres with 100-mm diameter were rotated with a radius
of 217 mm. The center of these spheres was set to a height
of 790 mm, which is nearly the same as that of the MMW
radar (715 mm), and the rotation center was set to 1,250 mm
from the radar device. In addition, a stop and go observation
technique was employed to acquire a reliable ground truth
profile in terms of both the location and velocity. In this
case, the PRI was 7 ms, which determined an unambiguous
velocity range of ±0.141 m/s, Note that this velocity range is
smaller than the maximum Doppler velocity of each sphere
of 0.20 m/s. The total number of all pulse sequences was
570, which means that the total observation time was 3.99
s. Here, the CPI (i.e., the temporal resolution) was set to

0.399 s (57 pulse hits) in the STFT-based Doppler velocity
decomposition given in Eq. (1), which indicates a velocity
resolution of 4.94× 10−3 m/s.

Fig. 6 (a) - (e) illustrates the ground truth profiles, where
each color denotes the Doppler velocity at the center of CPI,
and Fig. 6 (f)-(j) denote the conventional CI image, i.e., with-
out Doppler velocity decomposition process. Furthermore,
Fig. 6 (k)-(o) show the range-Doppler profiles obtained using
the Step 3) of the proposed method, Figures 6 (p)-(t) and
Figures 6 (u)-(y) illustrate the reconstruction images obtained
by the method [22] and the proposed method, respectively,
where each reconstruction image is binarized by a constant
threshold (0.2 times greater than the maximum response) and
is associated with the Doppler velocity (with color) obtained
by using the STFT or WKD method, respectively. Here, the
weighting parameter σarray in Eq. (4) was set to 15 mm in
both methods, which is one-quarter of the array aperture,
and α = 0.1 was set in Eq. (2) The WKD parameters were
set to β = 0.1 for Eq. (6), and στ = 0.04 s, σs = 0.7
and σvd = 0.2 m/s were set for Eq. (7). As shown in the
results obtained by the traditional CI images in Fig. 6 (f)
- (j), the two or three responses are clearly separated in the
reconstruction, which indicates that a sufficient azimuth angle
resolution was available in this case. In addition, the range-
Doppler profiles shown in Fig. 6 (k)-(o) validate that the
Doppler velocity resolution was sufficiently high to resolve
each target response along the Doppler velocity direction.
However, the associated images shown in Fig. 6 (p)-(t),
namely, I(r, τ ; ζ(m,n)) in Eq. (3) are simply associated with
the v

(m,n)
d obtained via the STFT analysis as [22], thus, it

could not provide an accurate estimation, due to a limited
unambiguous velocity range (±0.141 m/s). In contrast, the
proposed association images shown in Fig. 6 (u)-(y) exhibit
more accurate Doppler velocity estimation, because the WKD
Doppler estimator is free of the maximum velocity limitation,
and the Doppler velocity with the maximum evaluation value
in Eq. (7) provides the most reliable estimation among the
other range-Doppler points, in each CPI period. For refer-
ence, Fig. 7 shows the Doppler estimation results obtained
by the WKD method. As can be seen, the WKD method
generated an accurate Doppler velocity for all three objects,
and its Doppler velocity varied considerably in each CPI
period. These results demonstrate that the WKD method
retains much higher temporal resolution and accurate Doppler
velocity estimation, which could not be obtained using the
STFT-based analysis. In addition, Fig. 8 compares the errors
in the velocity estimations for the method [22] and the
proposed method. These results demonstrate that the pro-
posed scheme (i.e., WKD-based estimation) offers significant
improvement over all CPIs. In particular, the comparison of
the average values of these errors shows that the proposed
method (0.183 m/s) achieves velocity estimations four times
more accurate than those obtained using the method in [22]
(0.720 m/s).
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(a) τ= 0.4 s (b) τ= 1.2 s (c) τ= 2.0 s (d) τ= 2.8 s (e) τ= 3.6 s

(f) τ= 0.4 s (g) τ= 1.2 s (h) τ= 2.0 s (i) τ= 2.8 s (j) τ= 3.6 s

(k) τ= 0.4 s (l) τ= 1.2 s (m) τ= 2.0 s (n) τ= 2.8 s (o) τ= 3.6 s

(p) τ= 0.4 s (q) τ= 1.2 s (r) τ= 2.0 s (s) τ= 2.8 s (t) τ= 3.6 s

(u) τ= 0.4 s (v) τ= 1.2 s (w) τ= 2.0 s (x) τ= 2.8 s (y) τ= 3.6 s

Fig. 6: Results at each slow time in three rotating spheres model. 1st row: Ground truth profiles. 2nd row : Reconstructions w/o Doppler
velocity decomposition. 3rd row : Range-vd profiles. 4th row : Reconstructions w/ Doppler velocity decomposition (STFT) in [22]. 5th
row: Reconstructions w/ Doppler velocity decomposition (WKD). Red dots in (k), (l), (m), (n), and (o) denote the extracted local maxima.
Colors in from (p) to (y) denote the Doppler velocity.

C. Case for Real Walking Human

The proposed method was also evaluated using the case
of a walking human. Here, the human subject (height: 178
cm) was positioned 1.5 m from the radar site, and the
subject performed a stepping periodic motion with a period
of approximately 1.3 s. Thus, with the radar height set at 715
mm, the reflected signals are expected to primarily capture
echoes from the upper legs, lower arms, and torso regions.
The PRI is set to 7 ms, and the total number of all pulse
sequences was 380, which means that the total observation

time was 2.66 s. The CPI is set to 0.133 s (19 pulse hits)
in the STFT-based Doppler velocity decomposition [22],
indicating a velocity resolution of 1.48 × 10−2 m/s. To
introduce quantitative error analysis, a simplified walking
model with 11 ellipsoids was introduced, comprising the
upper and lower arms, the legs, the torso, and the head.
By considering the actual motions in the optical video, the
rotation and translation motions for each part were given
by the pendulum model. These simplified numerical models
provide referential location and time-varying motion vectors,
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Fig. 7: Doppler velocity estimation results by the WKD method in
three rotating spheres model. Black curve: Ground truth. Red dots:
Estimated by the WKD.

Fig. 8: Errors in Doppler velocity estimation in each slow time
for three rotating spheres model. Black dots: STFT [22]. Red dots:
WKD.

including Doppler velocity, at each slow time. Fig. 9 shows
the experimental model with a walking human body and the
numerical human model (11 ellipsoids) with representative
snapshots along the slow time, which are considered the
ground truth profiles of the target locations and velocities.
Fig. 10 (a) - (e) illustrates the ground truth profiles at each
center of CPI, where colors denote the Doppler velocity
value, and Fig. 10 (f)-(j) denote the conventional CI image,
i.e., without Doppler velocity decomposition process. Fig. 10
(k)-(o) show the range-Doppler profiles, and Fig. 10 (p)-(y)
also present the reconstruction results by each method, where
the parameters of α, β, σarray, σs, στ , and σvd were set as
described in Section III-B. For the results obtained by the
original CI (Fig. 10 (f)-(j)), while there are some unnecessary
responses that deviated from the actual shape, and some parts
of the body, e.g., the arms or legs, could be reconstructed
in the original CI. Focusing on the range-Doppler profile in
Fig. 10 (k)-(o), dominant responses can be observed in the
range of 1550 mm, and these were primarily caused by torso
parts, and some responses around 1000 m ≤ R ≤ 1200 m
could also be extracted as local maxima, which were caused
by a raised arm or leg with large motion. However, in the
method [22], since the maximum velocity range ±0.141 m/s
is considerably smaller than the actual velocity caused by
the walking motion over 2.0 m/s; thus, the extracted Doppler
velocities in the STFT based range-Doppler profiles could
not offer an accurate Doppler associated radar image (Fig.
10 (p)-(t)). Focusing on the Doppler associated image shown
in Fig. 10 (u)-(y) obtained using the WKD based Doppler

(a) Optical images

(b) Numerical models

Fig. 9: Walking human model in the experiment.

association, we can see that some unnecessary responses
in the conventional CI (in Fig. 10 (h) and (i)) could be
suppressed by filtering the Doppler space, and each Doppler
velocity could be estimated over 0.5 m/s. Fig. 12 shows the
quantitative error analysis of the Doppler velocity estimation
for each CPI sequence, and the results demonstrate that the
proposed method retained more accurate Doppler velocities
for nearly all CPI sequences.

Finally, we investigate the computational complexity and
run-time required for each method, where Intel Xeon Gold
6330 CPU 2.0 GHz with 2 TB RAM is used in all cases.
Table I summarizes these metrics for the three methods: the
original DAS method (without Doppler decomposition), the
method proposed in [22], and our proposed method. Key
notations include NT and NR which represent the number of
transmitters and receivers, respectively, and Nt the sampling
number along the fast-time t. Nx and Ny the number of
pixels in the radar image along the x and y axes, respectively.
NCPI and Ncluster correspond to the number of CPI (T )
in Eq. (1) and the number of clusters denoted as ζ(m,n),
respectively. Also, NRP denotes the number of Range-τ point
in each cluster. n both the original and proposed methods,
the parameters are fixed as follows: NT = 4, NR = 8,
Nx = 1000, Ny = 600, Nt = 15800 and NCPI = 19
while Ncluster and NRP vary depending on the target case.
Notably, in the method [22], Step 6 is not required, although
other parameters, such as Ncluster or NCPI remain consistent
with the proposed method. This table reveals that Step 2, 3,
4, and 5 account for 99.1 % of the total computation time
(1871 s). This computational demand is nearly identical in
both the method described in [22] and our proposed method,
as both require STFT-based Doppler velocity decomposition
and clustering. While the total processing time for both
the previous and the proposed methods is approximately 30
minutes, the additional computational cost of the proposed
method (Step 6: WKD related process) is only 7 s, accounting
for approximately 0.4 % of the total runtime. Thus, the
proposed method addresses a critical limitation in STFT-
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(a) τ= 0.20 s (b) τ= 0.47 s (c) τ= 0.60 s (d) τ= 1.40 s (e) τ= 2.60 s

(f) τ= 0.20 s (g) τ= 0.47 s (h) τ= 0.60 s (i) τ= 1.40 s (j) τ= 2.60 s

(k) τ= 0.20 s (l) τ= 0.47 s (m) τ= 0.60 s (n) τ= 1.40 s (o) τ= 2.60 s

(p) τ= 0.20 s (q) τ= 0.47 s (r) τ= 0.60 s (s) τ= 1.40 s (t) τ= 2.60 s

(u) τ= 0.20 s (v) τ= 0.47 s (w) τ= 0.60 s (x) τ= 1.40 s (y) τ= 2.60 s

Fig. 10: Results obtained by each method at different slow times. 1st row: Ground truth profiles. 2nd row : Reconstructions w/o Doppler
velocity decomposition. 3rd row : Range-vd profiles. 4th row : Reconstructions w/ Doppler velocity decomposition (STFT) in [22]. 5th
row: Reconstructions w/ Doppler velocity decomposition (WKD). Red dots in (k), (l), (m), (n), and (o) denote the extracted local maxima.
Black ellipsoids in the image denotes the cross-sectional images at z = −100, 0, and 100 mm. Colors in from (p) to (y) denote the
Doppler velocity.

based Doppler estimation while incurring minimal additional
computational cost, maintaining a complexity comparable to
that of the method in [22]. This advantage highlights the
efficiency and precision of our approach.

Notably, because the field of view of this radar module is
significantly limited to the elevation angle, different cross-
sectional images can be obtained by adjusting the radar
height. This adjustment also effectively suppresses clutter
signals that originate from different heights, such as from the
ground or a road surfaces. Additionally, even in scenarios

where multiple pedestrians are present within the field of
view, the proposed scheme retains a distinct advantage over
the conventional STFT-based scheme [22]. This is because
the high range resolution achievable in the 79 GHz band
(e.g., 37.5 mm) allows for the effective decomposition of
multiple pedestrians along the range axis. Even when multi-
ple individuals are located within the same range resolution
cell (i.e., within 37.5 mm), the 79 GHz band MIMO radar
provides sufficient angular resolution to differentiate between
multiple human bodies. For example, at a distance of 10 m,
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TABLE I: Computational complexity and actual run time in each τ .
Method Step Complexity Run time

Original DAS 1 O(NTNRNCPINt logNt) 3.0 s
7 O(NTNRNxNy) 6.8 s

Total 9.8 s
1 O(NTNRNCPINt logNt) 3.0 s

Method [22] 2,3 O(NTNRNCPI logNCPI) 84 s
(except for Step 6) 4,5 O(NTNRNclusterNCPI logNCPI) 1770 s

Proposed 6 O(NTNRNclusterN̄RP) 7.0 s
7 O(NTNRNxNyNcluster) 6.8 s

Method [22] Total 1863.8 s
Proposed Total 1870.8 s

Fig. 11: Doppler velocity estimation results by the WKD method
in walking human model. Black curve: Ground truth. Red dots:
Estimated by the WKD.

Fig. 12: Errors in Doppler velocity estimation in each slow time
in walking human model. Black dots: STFT [22]. Red dots: WKD.

the radar achieves an azimuth resolution of 310 mm, which
is significantly smaller than the average human body width
(approximately 600 mm). This feature is also retained in the
conventional STFT based scheme. However, it is unable to
retain a sufficient Doppler velocity range, which is a critical
limitation in accurately measuring the relative speed of the
target motion and vehicles.

IV. CONCLUSION

This paper has proposed an accurate Doppler veloc-
ity–associated radar imaging scheme for the 79-GHz band
MMW MIMO radar in a short-distance sensing application.
Focusing on higher Doppler velocity resolution in the 79-
GHz band, the proposed method introduces Doppler velocity
space decomposition to realize accurate Doppler associated
radar images. In addition, to overcome the limitation of
the maximum velocity range due to STFT-based Doppler

velocity analysis, the WKD-based estimator is associated
with the radar image, where the Doppler decomposition data
are processed simultaneously in the WKD scheme to suppress
inaccuracies caused by interference among multiple objects.
The performance of the proposed method was assessed in
two experimental validations involving three rotating metallic
spheres and a real walking human. The results demonstrated
that the proposed method achieved a more accurate Doppler
velocity–associated radar image than those acquired by the
existing method [21], [22]. Notably, the Doppler associated
images would be useful in the post-human object recognition,
such as based on the machine learning scheme [26]. Because
the experimental validation assumed a short-distance sensing
task (approximately 1 m), it would be more challenging
to consider long-range sensing, e.g., greater than 10 m,
to represent practical scenarios, such as automotive radar
for collision avoidance. However, the proposed scheme has
the potential to overcome the limited spatial resolution in
traditional radar imaging by decomposing Doppler veloc-
ity components, which are also obtained by an accurate
estimator, e.g., the WKD method. Thus, we are currently
investigating the proposed method’s efficacy for practical
applications at longer ranges.
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