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Abstract— Lower band ultrawideband (UWB) Doppler radar is
promising for through-wall imaging, e.g., human body detection
in rescue scenarios. The inherent problem with pulse-Doppler
radar is the tradeoff between the Doppler velocity resolution
and the resulting temporal resolution that makes it difficult
to conduct real-time target tracking, because the separation of
micro-Doppler velocities of the human body requires a higher
Doppler velocity resolution. This problem is particularly severe
for lower band UWB radar systems, which are required to
attain a sufficient penetration depth in concrete material in
the through-the-wall imaging scenario. Because UWB signals
generally have large fractional bandwidths, the reflected pulse
is located over a range gate along the slow-time direction; this is
well known as the range walk problem. As a promising solution
to this problem, this article newly introduces a technique for
a super-resolution Doppler velocity estimation algorithm based
on Gaussian kernel density estimation, which converts observed
range–τ points to Doppler-associated ranges. In addition, this
approach makes an important contribution for super-resolution
range extraction with a compressed sensing (CS) filter, which
is combined with the range-point migration (RPM) method for
human body imaging associated with micro-Doppler components.
2-D or 3-D numerical simulations, including human body imaging
scenario, demonstrate that the proposed method allows both
accurate Doppler velocity estimation and human body imaging,
which can be updated at the pulse-repetition interval.

Index Terms— Compressed sensing (CS), kernel density esti-
mation, micro-Doppler for human body, pulse Doppler radar,
range-point migration (RPM), through-the-wall imaging (TWI),
ultrawideband (UWB) radar.

I. INTRODUCTION

ULTRAWIDEBAND (UWB) microwave radar can be used
to attain both a high range resolution and deep penetra-

tion in low-loss materials, such as concrete materials and soil.
UWB short-range radar is thus a promising tool for through-
the-wall imaging (TWI), detecting human bodies buried under
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collapsed structures at disaster sites, and identifying hostages
and terrorists in security operations. To discriminate human
bodies from surrounding objects, it is promising that one
exploits the micro-Doppler component generated by different
motions of human parts, such as arms, legs, and the head, and
a pulse-Doppler radar system is thus promising for the above
applications. In the case of high-frequency radar systems, such
as a millimeter-wave radar system, Fourier-transform-based
Doppler processing could provide a sufficiently higher Doppler
velocity resolution [1], [2]. In the TWI-UWB radar model,
however, the center frequency of the pulse should be lower
than that of a millimeter wave for the pulse to accomplish
deeper penetration in concrete materials, resulting in a lower
Doppler velocity resolution. This negative effect necessitates
a longer coherent integration time (on the order of 100 ms) to
maintain a sufficient Doppler velocity resolution (on the order
of 0.1 m/s). In addition, the fractional bandwidth of a UWB
signal usually exceeds more than 20%, and the pulses received
from the first and last pulse hits cannot overlap because the
target may move during long observation, thus worsening
the effective Doppler velocity resolution. This problem is
recognized as the range walk (RW) effect [3].

Many studies have been conducted to address the RW effect
by applying the Hough transform [4]–[6], the keystone trans-
form [7], [8], or a motion-tracking approach [9]. In particular,
the Radon Fourier transform (RFT) method was first proposed
in [10], and extensions have subsequently been developed,
such as the Radon fractional Fourier transform (RFRFT)
in [11] and Radon-Lv’s distribution (RLVD) in [12]. However,
because these methods assume a high-speed target, such as an
aircraft or missile, they do not require such a long integration
time with lower Doppler velocity resolution (on the order
of 10 m/s) and need not consider Doppler velocity variations
in the coherent integration times. In addition, they basically
require target tracking and motion compensation to process the
data in order to obtain a long coherent integration time. As
other approaches, a method of target tracking and Doppler esti-
mation based on texture analysis has been proposed to achieve
supertemporal-resolution Doppler velocity estimation [17]. In
this approach, the instantaneous Doppler velocity is calculated
from the texture angle, which is defined as the ratio of the par-
tial derivatives of the signal strengths along the first and slow
directions. However, this approach requires a pixel connection
procedure for the texture angles to deal with interference,
which becomes extremely complicated and computationally
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expensive when more targets are introduced. Furthermore,
due to the partial derivative operation, this technique is gen-
erally sensitive to small fluctuations in the signal strength.
As other approaches overcome the limit of the Doppler fre-
quency resolution, higher resolution time–frequency analyses
have been developed, such as the Wigner–Ville distribution
(WVD) [13], the Fourier–Bessel transform (FBT) [14], or
the pseudo Wigner distribution (SPWD) [15], [16]. Although
those methods overcome the limitation of the Doppler velocity
resolution of the short-time Fourier transform (STFT)-based
methods, they also require the assumption that the envelope
of received pulses should be overlapped along the slow-
time direction to apply the coherent integration, and then
do not directly address the RW problem assumed in this
article.

To overcome the above difficulty, this article newly intro-
duces Gaussian kernel-based Doppler velocity estimation
based on range–τ points’ conversion, which we recently pro-
posed [18]. The first step of the proposed algorithm involves
range–τ points being extracted from the local maxima of
fast- and slow-time (denoting τ ) maps of the received signal
strengths. Each inclination of a range–τ point (i.e., the instan-
taneous Doppler velocity) is then accurately determined by
considering the distribution of the neighboring range–τ points
using a statistical approach with the Gaussian kernel density
estimator. The proposed Doppler velocity estimation method
was inspired by the range-point migration (RPM) algorithm,
which does not require the connection of so-called range
points [19]. The proposed method has a similar feature in
that it avoids the need for a process for connecting or track-
ing neighboring range–τ points, which realizes a significant
advantage over conventional motion-tracking approaches. In
addition, the proposed method has a significant advantage over
the traditional coherent integration approaches that a Doppler
velocity at each slow time (each range–τ point) can be deter-
mined without a lower limitation of velocity resolution, that
is, our proposed method simultaneously achieves both higher
temporal resolution [being identical to the pulse repetition
interval (PRI)] and accurate Doppler velocity estimation, even
in the RW scenario.

Furthermore, this article introduces a specific example of
human imaging scenario, where the micro-Doppler velocity
is associated with each range point with higher accuracy and
temporal resolution, and is exploited as data clustering in the
Doppler-associated RPM method [2], reducing the calculation
time and enhancing imaging accuracy. Additionally, to obtain a
higher range resolution with narrower band UWB radar, com-
pressed sensing (CS)-based range extraction, namely, the range
profile estimation scheme [20], is introduced to the present
algorithm. A large number of impulsive responses from the
CS-based filter make the RW effect more serious in traditional
approaches due to considerably larger fractional bandwidth;
however, the proposed Doppler velocity estimation completely
addresses the above issue and maximizes the benefit of the CS
filter when applied to imaging. The results of numerical simu-
lations of a TWI application conducted employing the 2-D
finite-difference time-domain (FDTD) method demonstrate
that the proposed method remarkably enhances both the

Fig. 1. Observation model.

Doppler velocity resolution and the temporal resolution, even
for multiple target models. Finally, the 3-D numerical analysis,
considering human mimicking objects (an aggregation of
ellipsoids), demonstrates that the proposed method offers a
more accurate human body image and motion with higher
temporal resolution.

The observation model presented in Sections II and III
describes the principle and methodology of the proposed
Doppler velocity method based on Gaussian kernel esti-
mation. In Section IV, the 2-D FDTD numerical analysis
and experimental validations are presented as a means of
rotating multiple spherical targets and are compared with
the traditional Fourier transform-based method. Section V
introduces the incorporation algorithm with a CS-based range
extraction filter and the RPM-based 3-D imaging method,
assuming a 3-D human body imaging scenario. The con-
clusion and some additional discussion are presented in
Section VI.

II. OBSERVATION MODEL AND

RANGE–τ POINT EXTRACTION

Fig. 1 shows the observation model of the TWI sce-
nario. Multiple targets with arbitrary shapes and motions are
assumed, while their locations, shapes, and velocities are not
given. The kth target has a motion vector vk(τ ), which is a
variable with respect to the slow time τ , where it is sampled
by the PRI. Omnidirectional antennas are arranged as a
single transmitter and multiple receivers. The transmitting and
receiving antennas are, respectively, located at LT = (XT, 0)
and LR = (XR, 0). A number of pulses are transmitted from
the transmitting antenna with the fixed PRI, and are received at
the multiple receiving antennas. A concrete wall with thickness
dw is simulated in front of the array with relative permittivity,
εw, and conductivity, σw , which are regarded as the given
parameters in any method. For each combination of LT and
LR, the output of a filter (e.g., a matched, Wiener, or CS filters)
of the recorded range–τ signal is denoted s(LT, LR, R�, τ �),
where τ � is the slow-time sampled at the PRI. R� = ct/2
denotes the measured range, where c is the speed of radio
wave in air and t is the fast time. The range–τ point
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Fig. 2. Relationship among the focused range–τ point (red solid circle) qi
and the others (blue solid circles) in the range–τ space.

q ≡ (LT, LR, R, τ ) is then extracted from the set of local
maxima of s(LT, LR, R�, τ �) as follows:

∂s(LT, LR, R�, τ �)
∂τ � = 0

s(LT, LR, R�, τ �) ≥ α max
R�,τ � s(LT, LR, R�, τ �)

⎫⎬
⎭ (1)

where α denotes the threshold parameter. If the Nyquist crite-
ria are satisfied for the fast-time direction, the measured range
R can be accurately determined beyond the range resolution by
introducing an over-sampling scheme, such as Sinc function-
based interpolation.

III. PROPOSED DOPPLER VELOCITY

ESTIMATION METHOD

A. Kernel-Based Doppler Velocity Estimation Algorithm

To overcome the lower limitation of the Doppler velocity
estimation in the Fourier-transform-based analysis, a novel
algorithm suited to signals with lower center frequencies and
larger fractional bandwidth pulses that are often encountered
in UWB-TWI applications is proposed for Doppler velocity
extraction. Fig. 2 depicts the relationship between the focused
range–τ point qi and others in the range–τ space. The
inclination between the focused range–τ point as q i and the
neighboring range–τ points as q j provides us the estimation
of the Doppler velocity on q i . Thus, the proposed method tries
to convert each qi to the associated Doppler velocity by using
the group of neighboring range–τ points. However, if a sensor
receives multiple responses from multiple targets, it becomes
extremely difficult to identify the connections between specific
range–τ points; this problem is analogous to the joint problem
of the DOA and range in spatial interferometry, which has
been solved using the existing RPM algorithm [19]. Therefore,
by introducing the RPM-based conversion scheme, the optimal
Doppler velocity can also be determined by avoiding the
connecting or tracking process. The proposed method also uses
Gaussian kernel density estimation to calculate a probability
function for the Doppler velocity, using the number of Doppler
velocity samples defined as every possible combination of
range–τ points. According to the above principle, the proposed
method determines the optimal Doppler velocity v̂d(q i ) for q i

as

v̂d (qi ) = arg max
vd

∑
j

exp

(
−|s(q i ) − s(q j )|2

2σ 2
s

)

× exp

(
−|τi − τ j |2

2σ 2
τ

)
exp

(
−|vd − vd,i, j |2

2σ 2
vd

)
(2)

where s is the signal strength of range–τ point q, and σs ,
στ , and σvd are constants, which are determined empirically,
but considering the S/N, PRI, and average Doppler velocity
variations. In particular, if στ becomes much larger than the
PRI, an accurate Doppler velocity estimation would not be
possible, given that the temporal variation of the Doppler
velocity is not negligible in the order of PRI, and therefore
should be set as a couple of PRI. vd,i, j is defined as vd,i, j ≡
(R j − Ri )/(τ j − τi ). The term exp(−(|vd − vd,i, j |2)/2σ 2

vd
)

denotes the Gaussian kernel probability function for the sam-
pled vd,i, j . The rationale for introducing the weight function
of exp(−((|τi − τ j |2)/2σ 2

τ )) is that the Doppler velocity could
change over the PRI, such that the Doppler velocity calculated
by the neighboring range–τ points of qi should be more
reliable for accurately estimating the Doppler velocity v̂d,i . In
addition, the weight function exp((−(|s(qi )) − s(q j )|2/2σ 2

s ))
is based on the signal strength for the range–τ points caused
by the same target being almost the same level. Note that, (2)
assesses the degree of accumulation of each converted Doppler
velocity, which is calculated from all possible combinations
of range–τ points considering the slow-time separation, and
the signal strength difference as a weighting function. While
the differential operation (using only the neighboring range–
τ points) is quite sensitive to range errors caused by noise,
the proposed method would be noise-robust if the results were
to be averaged by the number of range–τ points with the above
weighting factor.

Note that the proposed method focuses on numerous inclina-
tions [Doppler velocities, denoted as vd,i, j in (2)] and on each
range–τ point (qi ), as determined by all possible combinations
of range–τ points [q j , (i �= j)], not only neighboring range–τ
points. This could enhance the robustness of the range errors in
those cases with rich interference. In addition, this method has
unique advantages in that there is no lower limit of the Doppler
velocity resolution, in principle, when focusing on the inclina-
tion extraction for discrete range–τ points and that the method
overcomes the tradeoff between the Doppler velocity resolu-
tion and temporal resolution in the Fourier transform-based
analysis, i.e., an instantaneous Doppler velocity is available
using the proposed method. In addition, the Doppler velocity
optimization defined in (2) does not require the connecting or
tracking of range–τ points, greatly reducing the computational
cost and avoiding the dependence that occurs in connecting
the results, which is an advantage taken from the method
presented in [17]. Furthermore, even in situations with high
levels of interference in the range–τ space, the accuracy of
the Doppler velocity estimation is guaranteed if well-resolved
range–τ responses are available.
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Fig. 3. Initial dielectric maps in each case. Red solid circle: transmitting and receiving antennas’ location. (a) Case 1 (two targets). (b) Case 2 (three targets).
(c) Case 3 (four targets).

Fig. 4. Range-Doppler velocity responses by the STFT-based analysis of each temporal window with the width of 1.25 s. (a), (d), and (g) Case 1 (two
targets). (b), (e), and (h) Case 2 (three targets). (c), (f), and (i) Case 3 (four targets). Red solid circles: actual Doppler velocities. Black solid circles: estimated
Doppler velocities from local maxima of responses.

IV. PERFORMANCE EVALUATION FOR DOPPLER

VELOCITY ESTIMATION

A. Numerical Simulation Test

1) Numerical Setting: This section specifies the evaluation
for Doppler velocity estimation of the method proposed in
Section III-A, using the 2-D FDTD numerical simulation,
assuming the TWI situation. The transmitting signal forms
a Gaussian-modulated sinusoidal pulse, where the center fre-
quency is 3.0 GHz corresponding to the center wavelength of
λ = 100 mm, and the effective bandwidth is 2.0 GHz. A single
set of transmitting and receiving antennas is located on the
origin. A rectangular wall is located in front of the antenna
with thickness dw = 1.0λ, relative permittivity εw = 5.0,
and conductivity σw = 0.005 S/m. A number of circle-shaped
objects (mimicking a human), with relative permittivity of 50
(assuming a nondispersive and homogeneous material) and
conductivity of 1.0 S/m, travel along a circular orbit with an
origin at (0.0λ, 9.0λ) and a radius of 2.5λ. All objects have the
same velocity of 0.5π m/s and are equally spaced. The total

observation time is set at Tc = 1.0 s, where the number of
pulse hits is 64. The zero-Doppler components are suppressed
by removing the average component of s(L, τ �, R�) along the
τ direction. Here, we test the cases of different numbers of
targets. Fig. 3 shows the initial dielectric property map in each
case.

2) Noiseless Scenario: Here, we consider the case that
noise is absent to estimate the systematic error of the
proposed method. Fig. 4 shows the results of the STFT-
based Doppler-range maps for each case, where the tem-
poral window is slided along the slow-time direction with
the width of 1.25 s, denoting the nominal Doppler velocity
resolution as 0.04 m/s. These results show that the STFT-
based Doppler analysis suffers from inaccuracy and lower
resolution for the Doppler velocity estimation, because the
shorter integration time in the STFT results in lower Doppler
velocity resolution, which is the inherent limitation of Fourier
transform-based analysis. It is noted that a larger fractional
bandwidth signal (e.g., UWB pulse) further degrades the
Doppler velocity resolution, because the slow-time interval
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Fig. 5. (a)–(c) Responses of filter and extracted range–τ points in cases 1–3, respectively. (d)–(f) Estimated Doppler velocities (red solid circles) by the
proposed method at cases 1–3, respectively.

of pulse overlapping becomes smaller than that for a signal
having smaller fractional bandwidth. Fig. 5(a)–(c) presents the
distributions of the strength of responses of filter along the
slow-time direction and the extracted range–τ points. These
figures show that the envelopes of the reflection responses
do not largely overlap along the slow-time direction. That
is, the RW effect is never negligible. These plots show
that the Doppler velocity of each target considerably varies
along the slow-time direction due to rotating motion and
the long observation time, resulting in a lower and inac-
curate Doppler velocity estimation based on STFT analy-
sis. In contrast, Fig. 5(d)–(f) shows the estimated Doppler
velocities for each slow-time snapshot by the proposed
kernel-based Doppler analysis described in Section III-A
at each case. Here, σs = 0.7, σvd = 0.04 m/s, and στ = 634
ms are set in (2). Note that interference at the same range
gate results in inaccurate Doppler velocity estimation as shown
in the plots. In addition, some Doppler velocities are missed
in the estimation, especially in Fig. 5(e) and (f), because an
object enters an area of shadow projected by other objects.
In most snapshots, however, the proposed method accurately
estimates the Doppler velocity beyond the nominal Doppler
frequency resolution at each slow time, i.e., the higher tempo-
ral resolution and Doppler frequency resolution are simultane-
ously available. The required processing time of the proposed
Doppler velocity estimation is within 0.3 s in any case when
using an Intel Xeon CPU E5-1620 v2 (3.7 GHz) processor
with 16-GB RAM, showing that the proposed method has
an advantage in terms of the calculation cost over methods
requiring connecting or tracking processes in [9] and [17].

For quantitative evaluation, the error of the Doppler velocity
estimation is defined as

evd

(
vest

d,i

) ≡ min
v true

d

∣∣vest
d,i − v true

d

∣∣, (i = 1, 2, . . . , NT) (3)

Fig. 6. Cumulative probability distribution of the errors for the Doppler
velocity estimation in each case.

where vest
d,i is the estimated Doppler velocity of the i th range–

τ point qi , v true
d denotes the true Doppler velocities at each

slow-time snapshot, and NT is the total number of vest
d,i . Fig. 6

shows the cumulative distribution of evd (v
est
d,i ) for each case.

The cumulative probabilities satisfying evd (v
est
d,i ) < 0.02 m/s

is 79.5% for case 1, 84.6% for case 2, and 67.3% for case 3,
where the nominal Doppler velocity resolution in Fig. 4 is
0.04 m/s. This quantitative evaluation shows that our proposed
method accurately estimates the Doppler velocities of multiple
targets even in using lower frequency UWB radar in the TWI
scenario. In addition, for the quantitative comparison of the
conventional STFT-based Doppler velocity estimation meth-
ods, the local maximum points in the range-Doppler velocity
map shown in Fig. 4 are regarded as being the estimated
Doppler velocity values. Under these evaluation conditions,
the cumulative probability satisfying evd (v

est
d,i ) < 0.02 m/s and

RMSEs between the STFT-based and the proposed method are
summarized in Table I. This comparison verified the effective-
ness of the accuracy of the Doppler velocity estimation in the
proposed method.
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Fig. 7. Responses of filter and extracted range–τ points for (a) S/N = 30 dB, (b) S/N = 20 dB, and (c) S/N = 10 dB. Estimated Doppler velocities (red solid
circles) by the proposed method at case 2 in (d) S/N = 30 dB, (e) S/N = 20 dB, and (f) S/N = 10 dB.

TABLE I

ERROR ANALYSIS AS CUMULATIVE PROBABILITY

FOR ErrRange ≤ 0.02 m/s AND RMSE FOR EACH METHOD

3) Noisy Scenario: This section investigates the sensitivity
to additive random noise in the proposed Doppler velocity
estimation. The same observation model assumed in the previ-
ous section, described in Section IV-A, is assumed. The white
Gaussian noise is directly added to the recorded electric field
at each antenna. The signal-to-noise ratio (S/N) is defined as
the ratio of the peak intensity to the average noise power in
the range-Doppler data with nonzero Doppler velocity. Note
that, this definition of S/N is the strictest criterion among
other S/N definitions, because the S/N is calculated after
applying the matched filter, which is the most noise-robust
filter. This definition, thus, considers the locality of the signal
in both the time and frequency domains, and the situation
that S/N exceeds 30 dB is possible in a realistic scenario,
has been experimentally demonstrated [24], [25]. case 2 (three
targets) is selected in this test. Fig. 7(a)–(c) shows the range–τ
responses and the extracted range points for S/Ns of 30, 20,
and 10 dB. Fig. 7(d)–(f) shows the results of the estimated
Doppler velocities along the slow-time direction, obtained
using the proposed method for each S/N level. The plots show
that there are no significant differences between the results
for S/N of 20 and 30 dB and the results for the noiseless
case, revealing the noise robustness of the proposed method.
Meanwhile, for S/N = 10 dB, we see a number of falsely
detected range–τ points in Fig. 7(c), possibly resulting in
false target detection. However, by assessing the evaluation
function in (2), we can threshold out these kinds of false
points, as shown in Fig. 7(f). As a quantitative error analysis,

the cumulative probabilities satisfying evd (v
est
d,i ) < 0.02 m/s

is 82.6% for the case of SNR = 30 dB, 79.6% for the case of
SNR = 20 dB, and 57.7% the case of SNR = 10 dB, where
the nominal Doppler velocity resolution in Fig. 4 is 0.04 m/s.
The above results demonstrate the robustness of the proposed
method against additive noise.

4) Sensitivity Study for Parameters: The performance of the
proposed method depends on the parameters used in (2): σvd ,
σs , and στ . A sensitivity analysis for these parameters of the
proposed method is conducted as follows. Figs. 8 and 9 show
the cumulative probabilities of the estimation errors for the
Doppler velocity at different σvd and στ values, where case 2
(three targets) is chosen as the representative noiseless case.
Fig. 8 demonstrates that there is no serious sensitivity as to
στ , which expresses the correlation length along the slow-time
direction. It is considered that a longer correlation length for
στ results in inaccuracy around the start or end snapshot in the
pulse hits, while a shorter στ is sensitive to small fluctuation of
extracted ranges. Fig. 9 shows that σvd should be greater than a
certain value to maintain the accuracy (σvd = 0.02 m/s in this
case), suggesting that the correlation length should be longer
than the fluctuation in the calculated Doppler velocities vd,i, j .
We also confirm that there is no severe sensitivity in terms of
σs , which is regarded as being the variation in the strength of
each reflection response due to a propagation loss or reflection
surface. Furthermore, this must be larger than 0.1 to allow
for 10% variations in the reflection strength during multiple
pulse hits.

B. Experimental Test

This section describes the experimental validation of the
proposed Doppler velocity estimation method, using UWB
radar equipment, assuming a free-space imaging scenario,
for simplicity. Fig. 10 shows the measurement setup using
UWB impulse radar produced by the Sakura Tech Corporation.
The impulse UWB radar has an 8.5-GHz center frequency
(35.3-mm wavelength) and a 1.5-GHz 10-dB bandwidth.
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Fig. 8. Cumulative probability of the errors for different parameters of στ
in the proposed method in case 2, where σvd = 0.04 m/s and σs = 0.7 are
fixed.

Fig. 9. Cumulative probability of the errors for different parameters of σvd
in the proposed method in case 2, where στ = 634 ms and σs = 0.7 are
fixed.

Fig. 10. Experimental setup, including two spherical targets with rotating
table and the transmitting and receiving Fermi antennas. (a) Photograph.
(b) Geometrical arrangement.

That is, the theoretical range resolution is 100 mm. The trans-
mitting and receiving broadband Fermi antennas are arranged
vertically separated by 100 mm. Both E- and H-plane 3-dB
beamwidths of the Fermi antennas are 40◦. Fig. 11 shows the
power spectrum of the transmitting pulse. The two spherical
targets, each with a diameter of 100 mm, are rotated by
an azimuth table with an accuracy of 0.1◦ and a rotational
speed of 0.5π m/s, being the same conditions as those in the
numerical simulation case. Stop-and-go observations for each
rotation angle were performed to obtain an accurate profile
of the actual range and Doppler velocity, where the angle of
rotation θ is assumed to be 0 ≤ θ ≤ π with π/36 spacing, that
is, 37 observations (pulse hits) are acquired. The distance from

Fig. 11. Power spectrum of transmitting signal in the experiment.

Fig. 12. Envelope response of the matched filter and extracted range–τ points
(red solid circle) in the experiment. Color: strength of signals.

the radar unit to the center of the rotation table is 475 mm
and that from each target to the rotation center is 217 mm.
Here, the PRI is 156.25 ms, which is almost the same as
in the simulation. The range of the unambiguous Doppler
velocity is |vd | < 0.0575 m/s, which is determined by the
center frequency and the PRI. The number of pulse hits is
37 and the total observation time is 5.625 s. Fig. 12 shows
the received data after applying the matched filter as well as
the extracted range points. The figure demonstrates that the
response from each target can be observed, while part of the
response is lost due to the shadowing effect. Fig. 13 shows
the results of the STFT analysis, that is, the traditional method
wherein the temporal window along the slow-time direction is
1.25 s, corresponding to a nominal Doppler velocity resolution
of 0.0141 m/s in this case. As shown in Fig. 13, the STFT-
based method could not identify a significant response for
the Doppler velocity, which varies greatly over the PRI. This
is because the range of the unambiguous Doppler velocity
in the STFT method, calculated as |vd | < 0.0575 m/s, is
considerably smaller than that of the actual Doppler velocity
variation as |vd | > 0.1 m/s. Then, the STFT analysis suffers
from inaccuracy due to the ambiguity responses as in Fig. 13.
In addition, the temporal resolution of 1.25 s is obviously
insufficient compared with the temporal variation of the actual
Doppler velocity. As a higher temporal resolution case, Fig. 14
shows the results of the STFT analysis using the temporal
window with 0.625 s, corresponding to a nominal Doppler
velocity resolution of 0.0282 m/s. As shown in Fig. 14,
the STFT responses suffer from a lower Doppler velocity
resolution in return for higher temporal resolution. On the
contrary, Fig. 15 shows the results of the Doppler velocity
estimation obtained using the proposed method, where the
parameters are set to σs = 0.7, σvd = 0.04 m/s, and
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Fig. 13. Range-Doppler velocity responses by the STFT-based analysis with the temporal window width of 1.25 s. All actual Doppler velocities in each
case are out of the range of unambiguous Doppler velocity. (a) 0.15 s ≤ τ ≤ 1.40 s. (b) 2.03 s ≤ τ ≤ 3.28 s. (c) 3.90 s ≤ τ ≤ 5.15 s.

Fig. 14. Range-Doppler velocity responses by the STFT-based analysis with the temporal window width of 0.625 s. One actual Doppler velocity (red solid
circles) in (c) is within the range of unambiguous Doppler velocity. (a) 0.15 s ≤ τ ≤ 0.775 s. (b) 2.03 s ≤ τ ≤ 2.655 s. (c) 3.90 s ≤ τ ≤ 4.525 s.

Fig. 15. Estimated Doppler velocities (red solid circles) by the proposed
method using the experimental data in the cases without wall, where the two
spherical targets are rotated.

στ = 625 ms, these being almost the same as in the simulation.
Fig. 15 shows that our proposed method provides an accurate
Doppler velocity estimation, even when the range of the
unambiguous Doppler velocity in the STFT does not cover
the actual Doppler velocity variations, because each Doppler
velocity is determined by the group of the inclinations of the
range–τ points in the proposed method, and this is another
advantage for the proposed method, especially in assuming
large PRI. The RMSE for the Doppler velocity estimation is
0.019 m/s, which is smaller than the Doppler resolution in the
above STFT analysis in assuming higher temporal resolution
case, as in Fig. 14. Note that it is sometimes impossible to
acquire an estimate as a result of the shadowing effect or
the strong interference between the two targets with almost
the same ranges, as can be observed in the simulation results
shown in Fig. 5.

V. APPLICATION EXAMPLES FOR 3-D HUMAN

BODY IMAGING SCENARIO

This section describes the incorporation of the Doppler
velocity estimation method, proposed in Section III, into 3-D
human body imaging to emphasize the advantages of the
proposed method. The super-resolution property of the pro-
posed Doppler velocity estimation motivates the incorporation

of a promising signal processing and imaging algorithm. We
here focus on the CS-based TOA estimation as the range–
τ points’ extraction and the RPM imaging algorithm for the
3-D imaging scenario assuming a human body with micro-
Doppler variations. We briefly introduce each methodology
and incorporate these algorithms for the actual human body
imaging scenario as follows.

A. RPM Method

The RPM method was originally developed in [19] and has
been extended to various observation models [2], [21], [22].
This method assumes that a target boundary point exists on
a spheroid with focal points LT and LR and major radius R,
which are given by the so-called range points or range–τ points
denoted by q. The scattering center p̂(q i ) corresponding to
range point q i (called MainRP) is determined by assessing
the spatial accumulation of intersection points calculated using
other range points (called SubRPs) as

p̂(qi ) = arg max
pint(q i ;ql ,qm)∈Pi

∑
(q j ,qk)∈Qall

g(qi ; q j , qk)

× exp

{
−|| pint(qi ; q j , qk) − pint(qi ; ql, qm)||

2σ 2
r

}

(4)

where pint(qi ; q j , qk) denotes the intersection points of three
spheroids, whose focii are the positions of the transmitting
and receiving antennas and whose major radius is R. Pi

denotes a set of these intersection points and σr is determined
considering the spatial density of the accumulated intersection
points. Qall is the set of all range points. The weighting
function g(qi ; q j , qk) is defined as

g(qi ; q j , qk) = s(q j )exp

{
− D(q i , q j )

2σ 2
D

}

+s(qk)exp

{
− D(q i , qk)

2σ 2
D

}
(5)
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Fig. 16. Range points’ clustering based on Doppler velocity discrimination
as the preprocess of the RPM method.

where σD is determined empirically and D(q i , q j ) denotes the
actual separation of the two sets of transmitting and receiving
antennas and is expressed as

D(q i , q j ) = min(
LT,i − LT, j
2 + 
LR,i − LR, j 
2,


LT,i − LR, j
2 + 
LR,i − LT, j
2). (6)

Note that, in (4), the optimal combination of ql and qm is
determined by fully searching for all possible combinations.

Many reports have revealed that the RPM has a number
of advantages over the coherent-based imaging methods, such
as SAR or beamforming, that it maintains the reconstruction
accuracy, even assuming sparse array configuration (more than
a half of wavelength) due to incoherent process, and also it
has another advantage that data association with polarimetric
data [22] or Doppler velocity data [2] is achieved using one-
to-one correspondence between the range point qi and the
scattering center p̂(qi ). However, in the presence of multiple
objects, the greater number of SubRPs explosively increases
the computational cost because it is necessary to calculate the
intersection points of the three spheroids among all possible
SubRPs’ combinations, which must be solved numerically. In
addition, the combination of MainRP and SubRPs’ points from
different targets introduces inaccuracy in the calculation of the
actual scattering point in (4).

The clustering scheme of SubRPs for each MainRP offers
a promising solution to the above issues, because the

SubRPs should be included in the same target cluster of the
MainRP. In other words, if the MainRP is caused from the
kth target, it should be processed using only the SubRPs from
the kth target. Fig. 16 shows the concept of RP clustering
before the RPM process. The observation data are processed
and converted to a range-Doppler velocity map for each
antenna combination, and after the SubRPs’ clustering for each
MainRP considering the Doppler velocity proximity, the RPM
is applied only for each clustered SubRP. A previous study [2]
introduced Doppler velocity-based range points’ clustering
to appropriately cluster SubRPs for each MainRP without
a priori information on the target shape. The methodology
and procedure have been described [2], and the effectiveness
of the method has been demonstrated assuming a 140-GHz
millimeter radar system. However, in the lower band UWB
radar scenario, the Doppler velocity resolution becomes con-
siderably worse than that obtained by the above millimeter-
wave radar system, and it is difficult to apply the above
clustering scheme. We thus introduce the proposed Doppler
estimation algorithm in Section III-A to obtain a sufficient
resolution and accuracy in Doppler velocity estimation with
higher temporal resolution.

B. CS Filter-Based Range Point Extraction

The other problem with the lower band UWB radar is lower
range resolution because it is not possible to obtain a frequency
band as wide as that of the millimeter radar system, mostly
due to limited antenna characteristics or legal regulations (e.g.,
the spectrum mask of the emission level [23]). Thus, to take
full advantage of RPM imaging, the super-resolution range
extraction filter is introduced, the advantage of which has been
demonstrated in the literature [24]. The CS-based approach
is a promising solution to obtain higher range resolution
without ambiguity responses. The CS filter assumes that the
actual range profile satisfies a sparse representation, which is
mostly a reasonable assumption in the radar scenario. Let x
be the object range profile, n be a noise component, and s
be the received signal, all of which are discretely sampled
with a sufficiently small interval. Here, the object range
profile x̂ is determined as the solution to an optimization
problem

x̂ = arg min
x

(
s − Ax
2
2 + λCS
x
1

)
(7)

where A denotes the observation matrix defined as in (8),
at the bottom of the next page. Here, h = (h(0), . . . , h(K ))
denotes the impulse response of a transmitted pulse, and K
denotes the maximum length of h. Note that, to achieve a
super-resolution and highly accurate range profile production,
an oversampling process is usually required, which can be
easily achieved by using a zero-padding scheme for the higher
frequency areas in the frequency domain, if the Nyquist criteria
would be satisfied.

The procedure, incorporating the proposed method, CS-
based filter, and Doppler associated RPM, is summarized as
follows.
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Fig. 17. Flowchart of incorporating the proposed method, CS-based filter,
and the Doppler associated RPM.

TABLE II

DOPPLER VELOCITIES FOR EACH PART OF HUMAN BODY

Step 1: Received signals are recorded and each range profile
is calculated by CS filtering according to (7) at each slow
time τ , which is denoted as s(LT, LR, R�, τ �).

Step 2: Range–τ points q are extracted from the set of local
maxima of s(LT, LR, R�, τ �).

Step 3: Optimal Doppler velocity v̂d,i is obtained using (2)
for each q.

Step 4: Range–τ points are clustered by the Doppler veloc-
ity, where the proximity of the Doppler velocity between
qi and q j is defined as

δvd (qi , q j ) ≡ |vd,i − vd, j |. (9)

A set of SubRPs (RP cluster for q i ) satisfies
δvd (qi , q j ) ≤ δvd,th and is denoted as Qi .

Step 5: qi is converted to a target point p̂(q i ) by RPM using
Qi in (4).

Step 6: For each target point p̂(qi ), the Doppler velocity
vd,i is associated.

Fig. 17 shows the flowchart of the above procedure.

C. Numerical Test for Human Body Imaging

1) Numerical Setting: As a promising application of the
proposed Doppler velocity estimation method, this section
introduces a numerical test for its incorporation with CS-based
TOA estimation and RPM-based imaging, assuming human

Fig. 18. Observation model and human body setting in numerical test.

body imaging scenario. For simplicity, the front wall is not
considered here. The transmitting signal forms a Gaussian-
modulated sinusoidal pulse, where the center frequency is
5.0 GHz corresponding to the center wavelength of λ =
60 mm, and the effective bandwidth is 3.0 GHz, whose theoret-
ical range resolution in air is 50 mm. The PRI is 20.0 ms, while
the number of pulse hits is 10. The total observation time is
Tc = 0.2 s, and thus, in the sense of Fourier transform-based
analysis, the lower limit of the Doppler velocity resolution
is 0.15 m/s using the center wavelength. Fig. 18 shows the
observation model and the assumed human body object in
this case. It is assumed that the target is a human body
approximated as an aggregation of 11 ellipsoids corresponding
to the head, upper and lower torsos, arms, and legs, for
simplicity. For simplicity, we consider the stepping motion
of human body at the same position with the motion vector
along the y-axis, which is summarized as in Table II. In this
case, each motion velocity is set constant in any slow-time
snapshot, for simplicity. The 4 transmitting and 25 receiving
antennas are arranged on square planar arrays with the spacing
of 50 mm (5/6 λ), where a transmitter is set to each vertex
of the square array. Note that, the above array configuration
would generate a false image when the coherent-based SAR
or beamforming process is applied, because the minimum
spacing of array is more than a half of wavelength. Received
data with all combinations for LT and LR are processed, i.e.,
the MIMO radar model is assumed. The received time-series
data are generated by geometrical optics (GO) approximation
without the consideration of multiple scattering among targets.
The GO is the forward solver based on higher frequency
approximation, where the dominant propagation path can be
determined by the law of reflection in optics [26]. The reason
for introducing the GO based data generation is that it requires

A ≡

⎛
⎜⎜⎜⎝

h(K ), h(K − 1), . . . , h(0), 0, 0, . . . , 0,
0, h(K ), . . . , h(1), h(0), 0, . . . , 0,

. . .

0, 0, . . . , 0, h(K ), h(K − 1), . . . , h(0),

⎞
⎟⎟⎟⎠. (8)
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Fig. 19. Example of range profile responses (red lines) by (a) Wiener filter
and (b) CS filter, where the actual ranges are as blue solid lines.

Fig. 20. Range–τ distribution obtained by (a) Wiener filter and (b) CS
filter, where the color denotes a strength of each response. Red points: actual
range–τ points.

much less computational cost compared with other forward
solver, compared with the 3-D FDTD method, and we deal
with smoothed surface target, the curvature radius of each
part of human body is enough larger than the assumed center
wavelength (60 mm). The noiseless case is assumed here to
evaluate only a systematic error for each method.

2) Results and Discussion: First, to clarify the effectiveness
of the CS-based range (TOA) estimation, Fig. 19 shows one
example of range responses obtained by the conventional
Wiener filter (detailed in [2] and [19]) and CS filter, where
the number of the pulse hit is 5 (i.e., τ = 0.1 s) at LT =
(−100, 0, 1100) and LR = (0, 0, 950). Here, λCS = 10−3 is
set in (7), which is empirically determined in investigating a
number of similar examples. Also, Fig. 20 shows the range–τ
responses by each filter, and the extracted range–τ points at the
same antenna combination in Fig. 19. These figures demon-
strate that the Wiener filter-based range estimation suffers from
inaccuracy due to numerous range sidelobe responses, which

Fig. 21. Range-Doppler velocity estimation examples by (a) Method-I [2]
and (b) Method-II. Red solid circles and blue solid triangles denote the actual
and estimated range-Doppler points, respectively.

leads to many false detections of the range points. In contrast,
the CS filter considerably enhances the accuracy and resolution
of range estimation by efficiently suppressing the sidelobe
effect with sparse regularization. Second, the performance
of Doppler estimation, in this case, is investigated. Here,
the conventional method uses the Fourier transform-based
Doppler velocity estimation from the Wiener filter responses as
in Fig. 20(a), and we call the method as “Method-I.” On the
other hand, “Method-II” employs the Gaussian kernel-based
Doppler velocity estimation from the CS filter responses as
in Fig. 20(b). As shown in this figure, the CS filter offers an
accurate and higher range resolution; however, the extremely
impulsive form of range profile, like that shown in Fig. 20(b),
gives rise to a new problem in that the RW effects could
be more severe, because the extremely narrower pulses (not
having a carrier frequency) would be provided by the CS filter,
where the neighboring pulses would hardly overlap along the
slow-time direction. Therefore, the coherent integration-based
Doppler velocity estimation, including the higher resolution
time–frequency analyses such as [13]–[16], could not offer
a meaning results for Doppler velocity estimation, because
they require at least two pulses (with carrier frequency) within
the same range resolution to apply the coherent integration
process. Table III summarizes the contents of the above
methods. Fig. 21 denotes one example of the range-Doppler
estimation results at the fixed antenna combination. Here,
σs = 0.7, σvd = 0.4 m/s, and στ = 100 ms are set in (2).
As in Fig. 21(a), Method-I seriously suffers from inaccuracy
for both range and Doppler velocity estimations, because the
Wiener filter responses could generate false range peaks and
the Fourier-based analysis is not suitable for the case that
target range responses are not overlapped along the slow-time
direction, and has a lower limit of Doppler velocity resolu-
tion. On the contrary, Fig. 21(b) denotes that “Method-II”
achieves accurate range and Doppler velocity estimations in
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TABLE III

CONTENTS OF EACH METHOD

Fig. 22. Scattering center points obtained by Method-I [2] in noiseless case.
Color bar denotes the estimated Doppler velocity for each estimated point.

such richly interfered cases because the proposed Gaussian
kernel-based method exploits the notable feature of the CS
filter (very higher range resolution), while the Fourier- or
STFT-based analysis hardly deals with such impulsive (quite
wider fractional bandwidth) responses by the CS filter. Note
that, while Fig. 21(a) denotes the average responses along
slow-time direction, Fig. 21(a) illustrates the instantaneous
response at the one pulse hit (one snapshot of slow time),
which means that quite higher temporal resolution is available
in Method-II.

For quantitative analysis, we introduce the Doppler velocity
error as evd (v

est
d,i ), which is defined in (3). Also, the range error

is similarly defined as

eR(Rest
i ) ≡ min

Rtrue

∣∣Rest
i − Rtrue

∣∣, (i = 1, 2, . . . , NT) (10)

where Rest
i is the estimated range of the i th range–τ point

qi , Rtrue are the true ranges at each slow-time snapshot,
and NT is the total number of Rest

i . Using the above error
definition, Table IV summarizes the cumulative probabilities
in satisfying each error criteria for range and Doppler velocity
in each method. The table quantitatively demonstrates the
effectiveness of Method-II in terms of accurate range and
Doppler estimation performance.

Finally, the 3-D imaging performance obtained by the RPM
method is presented. Fig. 22 shows the RPM image using
the range points by the conventional method, i.e., the Fourier-
based Doppler analysis with Wiener filter responses [2]. As
shown in Fig. 22, the RPM imaging points obtained with
Method-I [2] seriously deviate from the actual ellipsoid surface
because of the lower accuracy and resolution for range point
and Doppler velocity due to richly interfered situations. In
contrast, Fig. 23 shows the RPM image using the range

TABLE IV

CUMULATIVE PROBABILITIES SATISFYING EACH ERROR CRITERION
OF RANGE AND DOPPLER VELOCITY FOR EACH METHOD

Fig. 23. Scattering center points obtained by Method-II in noiseless case.
Color bar denotes the estimated Doppler velocity for each estimated point.

points by Method-II, i.e., the proposed kernel-based Doppler
analysis with CS filter responses. Here, the snapshot at the
fifth pulse hit (τ = 0.1 s) is presented. In contrast, Method-II
as in Fig. 23 offers an accurate boundary or each part of the
human-mimicking ellipsoids, resulting from the upgrade of RP
estimation through CS and the enhancement of the Doppler
estimation through the proposed kernel-based method. For the
quantitative evaluation, the reconstruction error denoted by
eimage( pest

i ) is introduced as

eimage
(

pest
i

) = min
ptrue

∥∥ pest
i − ptrue

∥∥
2, (i = 1, 2, . . . , NT)

(11)

where pest
i and ptrue are, respectively, the locations of the i th

estimated point and the true target point (i.e., the group of
discretized points on the ellipsoid surface with a sufficiently
dense sample in this case), and NT is the total number of
pest

i . The numbers of reconstructed points satisfying eimage <
10 mm (=1/6λ) are 286 [13.2% of all points (2123)] for the
image in Fig. 22 (Method I) and 465 [79.3% of all points
(586)] for the image in Fig. 23 (Method II), and it shows that
the accuracy obtained by the proposed incorporation algorithm
is remarkably higher compared with the method based on the
literature [2].

VI. CONCLUSION

This article proposed super-resolution Doppler velocity esti-
mation based on the kernel density estimator assuming the
UWB-TWI scenario. The traditional analysis based on the
Fourier transform suffers from lower Doppler and temporal
resolutions due to the RW effect and time-variant Doppler
velocity feature in the UWB lower frequency band radar. To
overcome the above difficulty, this article newly introduces
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the Gaussian kernel-based algorithm for conversion from
measured range–τ points to Doppler velocity points without
any connecting or tracking procedures. While the proposed
idea of range–τ conversion was inspired by the algorithm
of the RPM method, the proposed method relies on Doppler
velocity estimation, which is totally different from the issue
faced with RPM, namely, the 3-D imaging scenario. It should
also be noted that the proposed method further resolves the
tracking problem encountered in time-variant Doppler velocity
estimation issued in [17] and has numerous other advantages
in terms of Doppler velocity resolution, temporal resolution,
unambiguity in velocity estimation, and applicability to time-
variant, multiobjects cases while being based on a tracking-
free algorithm. In addition, to achieve the best performance
in 3-D human body imaging, the CS-based TOA estimation
and the proposed Kernel-based Doppler velocity estimation
are appropriately incorporated in the framework of Doppler
clustering-based RPM imaging. The 2-D FDTD-based numer-
ical simulation of a UWB-TWI scenario and the experimental
validation, assuming free-spacing imaging with the actual
Impulse UWB radar system, demonstrated that the proposed
method can be used for accurate motion vector estimation with
considerably higher temporal resolution on the order of the
PRI, which cannot be achieved using traditional algorithms.
Note that, the proposed method is not based on a coherent
integration process but employs a procedure for connecting
the range–τ points, which are extracted from the local maxima
of the filter output. While such a connecting problem is not
easy to solve when there are many scattering points, the
stochastic kernel-based approach provides a robust solution
to this problem, while a similar problem has been effectively
resolved by the RPM method. Finally, the 3-D GO-based
simulation, assuming human-mimicking objects, verified that
our proposed method remarkably enhances the reconstruction
accuracy for each part of the human body, even when using
lower frequency band radar. It is noted that the proposed
method provides an RPM image for each slow-time snapshot,
because the range-Doppler data are available for each slow
time τ (i.e., each pulse sequence), and the RP clustering
scheme is effective for each snapshot. In contrast, a coherent
integration scheme such as the Fourier transform only provides
the time-averaged Doppler velocity and image. The above
point is a critical advantage of the proposed method.
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