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Complex Permittivity Retrieval Approach
with Radar Enhanced Contrast Source Inversion
for Microwave Non-destructive Road Evaluation
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Abstract—An experimental investigation of microwave quanti-
tative imaging of nondestructive testing applications for concrete
road structures is presented. A radar prior-based contrast source
inversion (CSI) scheme is introduced to achieve an accurate
reconstruction for target shape and dielectric property by ap-
plying the promising radar approach—range points migration
(RPM). Moreover, to address the local optimum problem, we
introduce an appropriate initial estimate for complex permittivity
that focuses on the cost function of the CSI. A numerical and
real data from an actual concrete road model, where a thin-layer
water-filled cavity is buried into the boundary area between the
asphalt and the concrete floorboard, show that our proposed
approach improves reconstruction accuracy for permittivity and
conductivity in a real nondestructive testing model.

Index Terms—Microwave quantitative imaging, Inverse scat-
tering analysis, Non-destructive testing for concrete road, Con-
trast source inversion (CSI), range points migration (RPM).

I. INTRODUCTION

Demands for emergent monitoring of aging roads, tunnels,
bridges, or other transportation infrastructures are increasing,
and a speedy and accurate nondestructive testing (NDT)
technique is strongly required for anomaly detection, such
as corrosion of reinforced rod, water leakage into air crack,
or chloride ingress. One of the promising solutions for the
above application is microwave-based nondestructive evalu-
ation (MWNDE) radar, which retains sufficient penetration
depth (exceeding 500 mm) and high-depth resolutions while
significantly reducing labor costs and time for large-scale
inspection [1]–[3].

The radar approach, a major imaging scheme for MWNDE,
which is based on the coherent synthesis of recorded signals
with array or scanning, provides us with the location or shape
of buried objects with high dielectric contrast from background
media, such as air, water cavity, or metallic pipe [1], [4].
In recent studies [5], [6], TOF-based incoherent imaging ap-
proaches have been developed to more accurately reconstruct
target shapes using point cloud expressions. Among these
methods, the range points migration (RPM) method offers
several advantages, such as low complexity and high accuracy
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for complex-shaped objects [5], [7]. However, the radar-based
approach cannot provide quantitative reconstruction for dielec-
tric profiles, such as permittivity and conductivity, creating a
significant challenge in determining the material property of
buried objects. To be more specific, focusing on road inspec-
tion, a water leakage accumulating in an area between asphalt
and floorboard would be fatal for road strength degradation,
possibly causing subsidence; however, the radar-based ap-
proach could not classify whether the focused image would be
air crack or water leakage. Several trends use machine learning
approaches to detect anomalies in rebar, such as corrosion.
These are evident in methods that employ microwaves [8]–
[11] and ultrasound [12]. However, these approaches require a
significant amount of training data and do not offer quantitative
evaluations based on physical properties. Additionally, recent
studies [13]–[16] have identified that complex permittivity is
a key parameter for classifying rust types, such as black, salt,
and red rust. This suggests that characterizing the dielectric
parameters is becoming more vital for advanced NDT tech-
niques [17], [18].

By solving the domain integral equation, inverse scattering
(IS) analysis, also known as tomography, can provide quanti-
tative reconstruction in terms of complex permittivity. Because
this inverse problem is ill-conditioned and nonlinear, different
nonlinear inversion methods, such as linear approximation-
based diffraction tomography [19], and distorted Born iterative
method (DBIM) [20]–[22], have been proposed. Among these
approaches, contrast source inversion (CSI) [23] is the most
promising solution owing to its low complexity and appli-
cability to real scenarios, and many studies have assumed
nondestructive evaluation or subsurface imaging scenarios
[24]–[27]. Meanwhile, the CSI or other IS approaches suffer
from inaccuracy due to ill-posed conditions (i.e., the number
of unknowns allocated to the region of interest (ROI) con-
siderably outnumbers that of measurements (data), especially
for the general NDT model) because the illumination angle
to object is severely limited. To address the above problem, a
sparse regularization algorithm [28], [29] has been developed,
but it requires a much expensive computational cost in the
optimization process. To address nonlinearity, deep learning
(DL) solutions have been developed extensively [30]–[35].
These studies have shown that such nonlinear issues can
be effectively optimized, even in full-wave 3D models or
experimental setups [36]. However, the accuracy of the DL-
based approach is largely dependent on both the pre-training
dataset and the DL structure. Moreover, only a few studies
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have applied the DL NIS approach to NDT models. Such mod-
els must contend with highly ill-posed conditions and high-
contrast buried objects, such as air or water-filled materials, set
against a concrete background. Another solution is the hybrid
use of the radar approach: a radar image is used for prior
knowledge of the post-IS optimization problem. Our previous
study [37] demonstrated that the RPM prior-based CSI offers
a distinct advantage from the traditional CSI by limiting the
ROI (reducing the number of unknowns), assuming the NDT
model. However, the study only demonstrated the effectiveness
of a simplified 2-D numerical model.

In light of the foregoing, we present an experimental in-
vestigation of real-world road specimens using commercially
available S-band ultra-wideband radar equipment, the part of
which has been introduced in [38]. We believe that quite
few studies have explored experimental or real-world data
investigations for quantitative reconstruction of realistic road
models using a water content cavity model between asphalt
and floorboard in microwave NDT applications. Additionally,
the initial estimate of the permittivity and conductivity of an
object is introduced by minimizing the cost function in the
CSI. Notably, a similar approach was proposed in the literature
[39] to avoid a local optimal solution. Furthermore, the relative
permittivity can be determined accurately by the maximum
response of the radar image focusing on the rebar response,
which does not require prior knowledge about the depth of the
rebar position or its cover thickness. By introducing an existing
efficient calibration procedure [43], [44], we demonstrate that
the proposed hybrid approach with RPM and CSI provides
more accurate quantitative reconstruction for the dielectric
profile of buried objects, e.g., an air cavity or water, located
at the boundary between asphalt and concrete floorboards.

Our primary contributions are summarized as follows.
1) Radar → Tomography: The RPM-based ROI limitation

enhances the post-CSI–based permittivity reconstruction
significantly by reducing the number of unknowns dras-
tically.

2) The initial estimate using the CSI cost function is
introduced to achieve accurate reconstruction of a high
contrast object, e.g., a water-filled cavity in concrete
media.

3) We propose an automatic determination process for the
relative permittivity of the background (concrete) media
that focuses on the rebar pipe and does not require prior
knowledge of concrete cover thickness or the depth of
the rebar position.

4) The experimental validation, assuming the realistic road
model with a thin-layer water-filled cavity demonstrates
that the proposed scheme enhances the reconstruction
accuracy of permittivity and conductivity considerably,
even when using commercial UWB radar equipment.

II. METHOD

A. Observation Model

Figure 1 shows the observation geometry, assuming the
typical NDT model, in which the background concrete media
forms two planar layers with asphalt and floorboard. A set

Fig. 1: Observation model, assuming concrete road NDE
application.

of transmitter and receiver is scanned along the horizontal
axis at the observation area, which is defined as ΩS, that is,
mono-static radar model is assumed. The ROI is defined as
ΩD, which usually includes a whole part of the background
concrete media in the inversion scheme. ET(ω; rT, rR) de-
notes a total electric field observed at position rR, which is
illuminated and scattered from the point source transmitter
at rT, at a specific angular frequency ω. Here the scattered
electric field ES(ω; rT, rR) is defined as follows:

ES(ω; rT, rR) ≡ ET(ω; rT, rR)− EI(ω; rT, rR). (1)

EI(ω; rT, rR) denotes the incident electric fields, which are
usually observed when the object is absent. Notably, the
complex permittivity and thickness of each concrete layer are
given, for simplicity.

Here, the matched filter output of ES(ω; rT, rR) is defined
as e(R; rT, rR), where R = ct/2, t is defined as time, and
the propagation speed in the air as c. Here, to apply the RPM
scheme, the range point qi ≡ (rT,i, rR,i, Ri) is extracted from
the local maxima of e(t; rT, rR) to R.

B. Contrast Source Inversion (CSI)

Here, we briefly introduce the CSI inversion scheme. The
domain integral equation expresses the predefined scattered
electric field ES(ω; rT, rR) as :

ES(ω; rT, rR) = k2B

∫
ΩD

GB(ω; r, rR)ξ(ω; rT, r)dr, (2)

where kB and GB(ω; r, rR) denote the wave number and
Green’s function of the background media, respectively.
χ(ω; r) ≡ (ϵc(ω; r) − ϵcB(r))/ϵ

c
B(r) denotes the contrast

function, where ϵc(ω; r) and ϵcB(r) are complex permittivities
at the angular frequency ω and the position r with and without
an object, respectively. The dummy variable, as a contrast
source, ξ(ω; rT, r) ≡ χ(ω; r)ET(ω; rT, r) is introduced. In
the CSI optimization scheme, the physical constraints are
implemented so that Eq. (2) must be satisfied at ΩS and ΩD.
To be more specific, the CSI minimizes the following cost
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Fig. 2: Conversion from RPM point cloud p̂(qi) to the
distributed image IRPM(r) via GMM.

function, in terms of χ(ω; r), ET(ω; rT, r), and ξ(ω; rT, r)
as follows:

F (χ,w) ≡
∑

rT
∥ES(ω; rT, rR)− GS [w]∥2ΩS∑

rT
∥ES(ω; rT, rR)∥2ΩS

+ λ

∑
rT

∥χ(r)EI(ω; rT, r
′)− ξ(ω; rT, r) + χ(r)GD[w]∥2ΩD∑

rT
∥χ(ω; r)EI(ω; rT, r′)∥2ΩD

,

(3)

where λ denotes the regularization coefficient, and the opera-
tors GS and GD are defined as:

GS [w] = k2B

∫
ΩD

GB(ω; rR, r)ξ(ω; rT, r)dr, (rR ∈ ΩS), (4)

GD[w] = k2B

∫
ΩD

GB(ω; r′, r)ξ(ω; rT, r)dr, (r
′ ∈ ΩD), (5)

∥ · ∥2ΩS
and ∥ · ∥2ΩD

denote the l2 norms calculated in ΩS

and ΩD, respectively. As a distinct feature of the CSI, the
variable ET(ω; rT, r)(r ∈ ΩD) is optimized with ξ(rT, r)
and χ(ω; r), that is; the iterative calculation of ET(ω; rT, r)
using a forward solver, such as FDTD, could be avoided,
thereby reducing the computational cost. However, because the
unknown cells are allocated to a whole part of the concrete
media, the number of these unknowns remarkably exceeds that
of the data (measurement points and frequency bins), and such
an ill-posed condition worsens in the NDT observation model
due to limited observation angles. Thus, the ROI limitation
scheme would be a promising solution for the abovementioned
problem because the buried object’s existing area is usually
sparsely distributed within the concrete media, and this scheme
significantly reduces the number of unknowns allocated to the
ROI.

C. RPM Prior Based ROI Estimate

The study [37] introduced a radar-based ROI limitation
scheme in which an RPM method was introduced in the radar
imaging process. The RPM converts each range point qi to the
associated scattering center as qi to the associated scattering
center as p(qi) via Gaussian kernel density estimation as
follows.

p̂(qi) = rc,i +

[
cos θ̂(qi)

sin θ̂(qi)

]
, (6)

Here rc,i ≡ (rT,i+rR,i)
2 , and θ̂(qi) is calculated as :

θ̂(qi) = arg max
θ

∑
j

|s(qj)| (7)

× exp

{
−
|θ − θ(qi, qj)|2

2σ2
θ

}
exp

{
−||rc,i − rc,j ||2

2σ2
X

}
. (8)

Here θ(qi, qj) denotes the angle of arrival from the scattered
center to rc,i, which is determined by the intersection point
of the two circles with the centers as rc,i and rc,j and the
radii as Ri and Rj , respectively, under the geometrical optics
approximation with a dielectric constant of the background
media. Additionally, σθ and σX are constant parameters.
These can be determined based on the specific criteria. For
instance, σθ is determined considering by the spatial profile
of the accumulated intersection points, namely, the presumed
aperture angle. Meanwhile, σX should be aligned with the
element intervals. The detail of these sensitivities has been
described in [7]. Many studies have validated that the RPM
offers a point cloud image that expresses a target boundary,
i.e., a scattering center point, even in complicated and multi-
object scenarios, which have been discussed in the literature
[5], [7].

To obtain the ROI area from the above RPM point cloud
image, the group of scattering center points reconstructed by
the RPM is converted to the following distributed image as
IRPM(r) using a Gaussian mixture model (GMM) as:

IRPM(r) =

N∑
k=1

πk√
(2π)m|Σk|

× exp

{
−1

2
(r − µk)

TΣ−1(r − µk)

}
, (9)

where N is the number of clusters. πk, µk, and Σk denote
weights, mean vector, and covariance matrix, respectively,
for the k-th cluster, which are determined by the group of
p̂(k)(qi). Here, the hyperparameters such as πk,µk, and Σk

can be optimized in the maximum likelihood procedure using
the expectation maximization (EM) algorithm [45]. Figure 2
illustrates the conversion process from the RPM point-cloud
to the 2-D distributed image using the GMM model.

Then, the ROI region IRPM
BI (r) is determined as:

IRPM
BI (r;α) ≡

{
1 (IRPM(r) ≥ αmax

r
IRPM(r))

0 (otherwise),
,

(10)

where α denotes the threshold parameter. Then, the ROI is
redefined as

Ω̃D =
{
r|IRPM

BI (r;α) > 0
}
. (11)

Then, the CSI with a limited ROI denoted as Ω̃(α) is carried
out to obtain a dielectric profile of the object. The details of
the methodology and process are described in [37].

D. Initial Estimate and CSI Optimization

Additionally, to provide an appropriate initial estimate of
permittivity and conductivity, a global search algorithm with
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Fig. 3: Processing flow of the proposed method.

TABLE I: Dielectric properties and size of background
medium and each target.

ϵr σ [S/m] size [mm]
Background medium 5.1 0.001 800 × 220
Water 77.0 0.537 550 × 12

few iterations is introduced to minimize the cost function
of CSI in Eq. (3). Here we assume that a buried object
has a homogeneous property with constant permittivity and
conductivity as (ϵobj, σobj). In other words, each profile is
defined as follows.

(ϵ(r; ϵobj), σ(r;σobj)) ≡

{
(ϵobj, σobj), (r ∈ Ω̃D)

(ϵB, σB), (r /∈ Ω̃D)
.

(12)

Under the above assumption, the complex permittivity is

defined as ϵ̃c(ω, r; ϵobj, σobj) ≡ ϵ(r; ϵobj) − jσ(r;σobj)

ωϵ0
.

Then, the contrast function is defined as χ̃(ω, r; ϵobj, σobj) ≡
(ϵ̃c(ω; r; ϵobj, σobj)− ϵcB(r))/ϵ

c
B(r).

Thus, the combination of ϵreobj and σobj are optimized as
follows:

(ϵ̂obj, σ̂obj) = arg min
(ϵobj,σobj)

F (χ̃(ω, r; ϵobj, σobj), w). (13)

In the CSI optimization sequences, the total field ET(ω; rT, r)
and contrast source w are optimized when calculating
F (χobj, w), where the contrast function is fixed as χobj.
This scheme can reduce the number of unknowns, and yield
much faster convergence of the optimization, if we assume an
appropriate combination of ϵreobj and σobj. Finally, the above
contrast function as χ̂obj(ω) is used for the initial estimate
of the post-CSI process, where both χ and w are updated
in the optimization process. Figure 3 shows the processing
flow of this method. The proposed scheme is expected to
enhance a reconstruction accuracy due to the reduced number
of unknowns and a more appropriate initial estimate.
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Fig. 4: Original profile of permittivity and conductivity.

III. RESULTS IN NUMERICAL TEST

A. Numerical setup

At first, the 2-D FDTD numerical test, assuming the typical
NDT model, is presented as follows. We assume the bi-static
observation model, where a set of transmitter and receiver
with 60 mm separation as Dbi is scanned along x axis. The
observation data is acquired with 10 mm interval with this bi-
static radar at the line 20 mm far from the concrete surface.
The transmitted current forms Gaussian modulated pulse with
the center frequency of 2.45 GHz and the effective bandwidth
of 2.70 GHz. A point source and sensor are assumed at
transmitter and receiver. Figure 4 shows the original profile
of the background media and water filled object for relative
permittivity and conductivity. The dimensions and dielectric
properties of each object and background media are summa-
rized in Table I. In this simulation, the dimension and dielectric
property of the background concrete media is given, and the
rebar object buried into concrete material is not considered,
to assess the reconstruction performance of dielectric profile
under the ideal situation. Here, we assume the single layered
homogeneous concrete media as background media, which
has non-dispersive dielectric feature in this frequency band,
demonstrated in some literature [13] The cell size for FDTD
and CSI inversion is set to 2 mm square. We assume a water
filled material located at the inner area of concrete material
with 80 mm below from the surface, which models an anomaly
area between asphalt and concrete floor board as shown in
Fig. 1. Here, the Green’s function of the concrete background
media is also given by the FDTD at the absence of buried
object. The total number of unknowns, corresponding to a
whole area of concrete (background) media, is 44000.

B. Reconstruction results

1) RPM based ROI estimate: At first, the RPM based ROI
reconstruction performance is validated as follows, described
in Sec. II-C. Figure 5 shows the reconstructed RPM imaging
points, and the converted distributed image by the GMM as
IRPM(r), where each RPM parameter is set as σX = 5.0
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Fig. 5: Reconstruction of RPM point cloud and the extracted
ROI by the RPM GMM model. Red dots are the RPM image.
Green dots are the extracted ROI cells. Color denotes the
relative permittivity.
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Fig. 6: Distribution of residual of the CSI cost function in
each case using FDTD data. White dot denotes the minimal
solution. Color denotes the residual of the cost function.

mm and σθ = 0.1 radian. This figure shows the RPM point
cloud accurately reconstructs the upper boundary of the buried
object, and the GMM distributed area sufficiently covers the
actual ROI area. In addition, the selected ROI IRPM

BI (r;α)
contains a whole of target region, where the parameter α =
0.05 is empirically determined.

2) Initial Estimate of Dielectric Property: Next, the initial
value estimation results described in Sec. II-D, are described
as follows. Figure 6 shows the distributions of the residual
values of the minimized cost function as a combination of
the relative permittivity and conductivity for the cases using
the true ROI and RPM based ROI (illustrated in Fig. 5). In
CSI processing, six frequency points 1.06, 1.15, 1.29, 1.38,
1.47, and 1.56 GHz are used in optimizing the cost function,
and the iteration number in fixed contrast function χobj is
1000. As shown in Figure 6, for the true ROI, the optimized
combination of relative permittivity and conductivity is repre-
sented as (ϵ̂obj, σ̂obj) = (80, 1.0 S/m). In contrast, the actual

TABLE II: RMSE for relative permittivity and conductivity in
the numerical test.

Number
of unknowns RMSEϵr

RMSEσ

[S/m]
CSI w/o ROI limit. 44000 76.0 0.48
CSI w/ ROI limit.

(True ROI) 1656 6.0 0.59

CSI w/ ROI limit.
(RPM ROI) 4428 15.9 0.50

dielectric parameters are defined as (77, 0.53 S/m). Although
the conductivity showed noticeable discrepancies, the relative
permittivity was estimated precisely. By narrowing down the
ROI and assessing the CSI cost functions, we can provide a
suitable starting point for estimates, particularly concerning
relative permittivity. Focusing on the case of the RPM based
ROI, the optimized combination has some errors, especially
for conductivity direction, and then, it indicates that the ROI
accuracy directly affects the initial estimate for the permittivity
and conductivity, which has been also demonstrated in [37].

3) Final Reconstruction: Figure 7 and 8 show the final
reconstruction results for the relative permittivity and con-
ductivity, respectively, using the initial estimate with the true
and RPM based ROI, where the iteration number of the post
CSI is set to 1000. Focusing on the original CSI approach,
namely, without limiting the ROI, it could not provide an
actual dielectric property in particular for relative permittivity,
because without limiting the ROI, the number of unknowns
increases to 44000, leading to a severely ill-posed condition.
On the contrary, the proposed scheme with ROI limitation
offers a certain level of reconstruction accuracy especially in
using the true ROI, because the pre-initial estimate offers more
effective convergences and the massively reduced unknowns
also contribute to the accuracy enhancement. Note that, the
final reconstruction results largely depend on the initial es-
timate for both permittivity and conductivity, especially for
the true ROI cases. For the case in the RPM based ROI, the
final reconstruction are updated especially for the center of
ROI in relative permittivity, which corresponds to the true ROI
area. Figure 9 illustrates the residual of the cost function as
a function of the number of iterations for each method. The
results highlight that our proposed method, particularly when
using the true ROI, significantly improved the convergence
speed. This improvement is achieved by limiting the ROI,
which considerably mitigates ill-posed conditions.

Here, some quantitative metric for accuracy evaluations are
introduced. Table II summarizes the error evaluations, where
the root mean square errors (RMSE) are used to evaluate
relative permittivity and conductivity. The RMSEs for relative
permittivity RMSEϵ and conductivity RMSEσ are defined as
follows.

RMSEϵ =

√√√√ 1

N

N∑
i=1

|ϵtrue(ri)− ϵest(ri)|2 (14)

RMSEσ =

√√√√ 1

N

N∑
i=1

|σtrue(ri)− σest(ri)|2 (15)
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Fig. 7: Reconstruction results of relative permittivity. Color
denotes the relative permittivity. Red solid rectangular is the
boundary of water-filled object area.

Here ϵtrue(ri) and ϵest(ri) denote the true and reconstructed
relative permittivities at the location ri, respectively. σtrue(ri)
and σest(ri) also express the conductivity, defined in the same
way as relative permittivity. N denotes the total number of
inversion cells allocated to each area. Here, this area is set to
only the true ROI for fair comparison. The evaluations show
that our proposed method significantly reduces the RMSEs for
the relative permittivity, by reducing the number of unknowns
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Fig. 8: Reconstruction results of conductivity. Color denotes
the relative permittivity. Red solid rectangular is the boundary
of water-filled object area.

and offering suitable initial estimates. However, there are no
marked improvement in the reconstruction of the conductivity.
The primary reason for this outcome is that while a relative
permittivity is dependent on both phase and magnitude differ-
ence of scattered signal, while the conductivity is that while
relative permittivity relies on both the phase and magnitude
differences of the scattered signal, conductivity is primarily
influenced by its magnitude. Given the assumption of a high
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Fig. 9: Residual of the cost function in the CSI in each
approach. Blue curve: CSI w/o ROI limit. Black curve: CSI
w/ ROI limit. (True ROI) Red curve: CSI w/ ROI limit. (RPM
ROI)

TABLE III: Computational time required for single iteration
in each method.

CSI w/o ROI limit. CSI w/ ROI limit.
(True ROI)

CSI w/ ROI limit.
(RPM based ROI)

352.0 s 2.1 s 9.9 s

dielectric contrast object in terms of both permittivity and
conductivity, such as a water-filled area set against a low-loss
concrete background, we observe minimal variation in the cost
functions of Eq. (3) for the changes in conductivity compared
to those of the relative permittivity, as illustrated in Fig. 6.
This insensitivity in the cost function makes it challenging to
determine the conductivity with adequate accuracy. However,
considering real-world scenarios, we can determine an object’s
material by assessing only its relative permittivity, which
varies significantly between air (1), concrete material (5-10),
and water (50-80).

We investigated the computational cost as follows: Table
III provides the computational runtime required for a single
iteration in each CSI method when using the two Intel Xeon
Gold 6330 processors with 2048 GB RAM. Because the
original CSI method without an ROI constraint addresses a sig-
nificantly larger number of unknowns (44,000), its calculation
time is much longer than that of the proposed method, which
significantly reduces the number of unknowns. In essence,
our proposed method with ROI limitation not only improves
the reconstruction accuracy, but also significantly reduces the
computational time required in the inversion process.

4) Sensitivity to Parameters and Additive Noise: This sec-
tion discusses the sensitivity of reconstruction accuracy when
influenced by varying parameters or additive noise. Initially,
we address the threshold parameter α, which is used to define
the ROI area from the radar image using Eq. (10). While we
set this parameter to α = 0.05 in Sec. III-B-3), it is anticipated
that a larger α would result in a smaller determined ROI
and vice versa. Consequently, the parameter α has a direct
impact on the reconstruction accuracy of the proposed method,
which is evident not only in Fig. 6 but also in Figs. 7 and
8. To highlight the sensitivity of parameter α, we studied two
scenarios, where α = 0.025 and α = 0.1, given that α = 0.05,
as established in the results of Sec. III-B-3). Figures 10 shows
the distribution of the residual of the CSI cost function when
α = 0.025 and α = 0.1. This indicates noticeable differences
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(a) RPM ROI, α = 0.025
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(b) RPM ROI, α = 0.1

Fig. 10: Distribution of residual of the CSI cost function in
changing the parameter α. White dot denotes the minimal
solution. Color denotes the residual of the cost function.
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Fig. 11: Reconstruction results of the proposed method with
ROI limit (RPM ROI) in changing the parameter α. Color
denotes the relative permittivity. 1st column: Relative permit-
tivity. 2nd column: Conductivity. Red solid rectangular is the
boundary of water-filled object area.

from the case in which α = 0.05, signifying significant
sensitivity in relation to the optimal pairing of (ϵ̂obj, σ̂obj).
Figure 11 illustrates the reconstruction results obtained using
the proposed method for α = 0.025 and α = 0.1 in terms
of relative permittivity and conductivity, respectively. Table
IV presents the RMSEs for both relative permittivity and
conductivity for different values of α. These results underscore
the significant influence of α selection on the reconstruction
profile. This is attributed to the fact that the extracted ROI
area directly sets the number of unknowns. In particular,
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TABLE IV: RMSE for relative permittivity and conductivity
in changing the parameter α.

Number
of unknowns RMSEϵr

RMSEσ

[S/m]
α = 0.025 4949 26.81 0.50
α = 0.05 4428 15.9 0.50
α = 0.1 3533 17.44 0.79
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Fig. 12: Reconstruction results of relative permittivity and
conductivity at the case of 20 dB SNR . 1st column: Relative
permittivity. 2nd column: Conductivity. Color denotes the
relative permittivity. Red solid rectangular is the boundary of
water-filled object area.

when dealing with high-contrast objects, such as water, these
ROI selections profoundly impact reconstruction accuracy.
However, using our proposed method, we can consistently
achieve a much higher relative permittivity for any given
α, a feature that is challenging without employing the ROI
limitation scheme. Various techniques have been developed to
optimize the threshold parameter α based on distributed radar
images. Examples include Otsu’s discriminant analysis and its
derivative methods [40]–[42]. Another notable solution is our
distinct approach of updating the ROI using the cost function
of the CSI [37]. Integrating these techniques will be the key
focus of our future work.

Next, we examined the sensitivity of each method to ad-
ditive noise. White Gaussian noise was introduced to the
received signal in the time domain. The signal-to-noise ratio
(SNR) is defined as the ratio of the maximum signal power
to the noise power, that is, the variance of the Gaussian
distribution. It is worth noting that the signal incorporates a
reflection response from the buried object, but excludes surface
reflection from the upper surface of the concrete medium.
Our investigation focused on an SNR level of 20 dB. Figures
12 displays the reconstruction results for each method with
respect to relative permittivity and conductivity. Table V lists
the RMSEs for the relative permittivity and conductivity in
this context. These findings suggest that there is no significant

TABLE V: RMSE for relative permittivity and conductivity in
the numerical test at 20 dB SNR.

Number
of unknowns RMSEϵr

RMSEσ

[S/m]
CSI w/o ROI limit. 44000 75.41 0.48
CSI w/ ROI limit.

(True ROI) 1656 7.95 0.33

CSI w/ ROI limit.
(RPM ROI) 4125 7.71 0.46

(a) Sample under test (b) Measurement scene

(c) Geometry (X-Y)

(d) Geometry (X-Z)

Fig. 13: Experimental scene and observation geometry.

sensitivity to random noise at this SNR level. This stability
can be attributed to the use of multiple frequency samples
(specifically, six samples) to determine the initial estimate for
the combination of (ϵ̂obj, σ̂obj). Moreover, the RPM image is
recognized as a noise-resistant radar imaging algorithm that
leverages the global profile of the obtained range points [7].

IV. RESULTS IN EXPERIMENTAL TEST

A. Experimental Setup

Figure 13 shows the experimental site and target model,
assuming an actual NDT inspection, and focusing on the
detection of air crack or water leakage at the area between
asphalt and floorboard. The commercial UWB radar module,
Structure Scan SIR-EZXT by GSSI Inc., is used, which has
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(c) ϵB = 4.5

100 200 300 400 500 600
x [mm]

100

200

300

y 
[m

m
]

0

2

4

am
pl

itu
de

109

(d) ϵB = 5.0

100 200 300 400 500 600
x [mm]

100

200

300

y 
[m

m
]

0

2

4
am

pl
itu

de

109

(e) ϵB = 5.5

100 200 300 400 500 600
x [mm]

100

200

300

y 
[m

m
]

0

2

4

am
pl

itu
de

109

(f) ϵB = 6.0
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(h) ϵB = 7.0

Fig. 14: SAR images ∥ISAR(r; ϵB)∥ using different background permittivities as ϵB.

a center frequency of 2.7 GHz and a bandwidth of 2.7 GHz.
In this module, a half wavelength dipole antenna is used as
a transmitter and receiver, whose separation is 60 mm. This
radar module is scanned along the x-axis with a 600 mm
aperture length and 2.5 mm spacing - 241 measurement points
are used for imaging analysis. Here, we assume that both
asphalt and floorboard have the same relative permittivity (5.1)
and conductivity (0.001 S/m), for simplicity. The object area
forms 550 × 550 mm dimension with 10 mm thickness, which
is located at the upper surface of the floorboard. We assume
a water-filled cavity same as in the numerical test, where the
water has a relative permittivity of 77.0 and conductivity of
0.537 S/m.

B. Calibration Procedure

This section describes the calibration procedure that trans-
forms the experimental data into the corresponding simulation
data. This was achieved using a linear transfer function model,
as discussed in references [36], [43], [46], [47]. Initially,
we measured the reflection responses assuming that the ROI
contained only air (serving as the calibration object). These
responses were also produced by the FDTD simulation. Let
ET

sim(ω) and EI
sim(ω) be the total and incident electric fields

generated by the FDTD method at a specific transmitter and
receiver pair, respectively, assuming the calibration object.
Meanwhile, ST

exp(ω) and SI
exp(ω) are the S21 parameters in the

experiment conducted with and without the calibration objects,
respectively. From these, the calibration coefficient ζ(ω) is
defined as:

ζ(ω) ≡ ET
sim(ω)− EI

sim(ω)

ST
exp(ω)− SI

exp(ω)
, (16)

Utilizing the coefficient ζ(ω), the experimental scattered
data, represented as S̃S

exp(ω) ≡ S̃T
exp(ω) − S̃I

exp(ω), can
be transformed into simulation data, denoted as ẼS

exp(ω) =

ζ(ω)S̃S
exp(ω). This simulation data is subsequently employed

in post-RPM and CSI processing.

C. Reconstruction results

1) Relative Permittivity Estimate of Background Media:
A number of studies demonstrated that the accuracy of the
radar image, including the RPM, or the quantitative image
using the inverse scattering approach, like CSI, highly de-
pends on the dielectric parameter (relative permittivity) of
the background media, namely, the concrete media. In the
experiment, it is usually difficult to determine the parameter
of relative permittivity under the condition that both thickness
and permittivity are unknown, however, we need to estimate
this parameter even in this situation, in assuming the real
scenario. In this paper, we introduce a simple approach to
determine the relative permittivity from the traditional radar
image, namely, the SAR method. In this case, we use the
well-known SAR algorithm, as delay-and-sum (DAS). In the
DAS processing, the propagation speed should be given as
vbg = cair/

√
ϵB, where ϵB denotes the relative permittivity

of background media. Then, we define the DAS image as
a function of ϵB, as IDAS(r; ϵB). In the realistic case, there
are rebar pipes buried into the concrete floorboard, and their
responses from the rebar forms a hyperbolic curve, because
the rebar shape should be regarded as point target in the 2-D
model approximation. In this assumption, the optimal relative
permittivity of the background media is determined as follows.

ϵ̂B = arg max
ϵB

∥ISAR(r; ϵB)∥ (17)

This approach has a notable feature that it does need a prior
knowledge of the depth of the rebar position or thickness
of asphalt or concrete floorboard, but only assumes that if
we set an appropriate relative permittivity of background, the
energy distributed to hyperbolic curve should be focused on
the assumed rebar position, and takes a maximum value under
energy conservation law. Figure 14 shows each DAS image
assuming different relative permittivity from ϵB = 4.0 to
ϵB = 7.0, the range of which is referred from some literature
[49], corresponding to dry and wet concrete state. As shown
in Fig. 14, the DAS image mostly focused on the rebar point,
in the case of ϵB = 5.0 or 5.5. Figure 15 shows the maximum
values of the DAS image as a function of ϵB, and indicated
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Fig. 15: Maximum values of SAR image as a function of
relative permittivity in the experiment. Color denotes the
strength of the image.
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Fig. 16: The extracted ROI by the RPM GMM model in the
experiment. Red dots are the RPM image. Green dots are the
extracted ROI cells. Color denotes the relative permittivity.

that the optimal parameter of the ϵB should be set to 5.1, in
this case.

2) RPM based ROI estimate: Figure 16 shows the dis-
tributed radar image determined by the RPM point cloud as
IRPM(r) in Eq. (9) and the ROI limitation results in Eq. (10).
In the RPM processing σθ = 0.1 radian and σX = 5 mm
are set, and the parameter α = 0.05 in this case. This figure
shows that the limited ROI by the RPM accurately covers the
actual target shape. In this case, the numbers of unknowns are
44000 without ROI limitation and 4428 with ROI limitation by
the proposed method, and the proposed ROI limitation scheme
considerably reduces the number of unknowns less than 10 %,
which is expected to enhance reconstruction accuracy during
post CSI processing.

3) Initial Estimate of Dielectric Property: Next, we show
the results in the initial estimate for permittivity and conductiv-
ity. Here, to remove the rebar responses from the B-scan data,
the transfer function based clutter suppression method has
been introduced. Figure 17 shows the minimized residual of
the CSI cost function in 1000 iteration with the fixed contrast
function χ, in the case of the true and RPM based ROI. In CSI
processing, the frequency points and the iteration number are
same in the numerical test, as described in Sec. III. As shown
in these results, the initial estimates using the true and RPM
ROI offers a high relative permittivity, which are expected to
more than 70. In the true ROI case, the optimized combination
is ϵ̂, σ̂ = (100, 0.01 S/m), while the RPM ROI case provides
the estimation as ϵ̂, σ̂ = (80, 0.1 S/m). Note that, the minimal
residual of the cost function in the true ROI is slightly larger
than that of the RPM based ROI, and the conductivity values
are relatively lower than that of the water (usually higher than
0.5 S/m). It is considered that the actual water object includes
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(a) True ROI

1 5 10 20 30 40 50 60 70 80 90 100

r

0

0.001

0.01

0.1

0.5

1
10-3.0

10-2.5

10-2.0

10-1.5

10-1.0

10-0.5

100.0 

(b) RPM ROI

Fig. 17: Distribution of residual of the CSI cost function in
each case using the experimental data. White dot denotes
the minimal solution. Color denotes the residual of the cost
function.

some air void at the upper surface of the ROI, and it causes the
lower conductivity estimation. We would also note that there
should be calibration error in converting the experimental data
to the FDTD data due to using the linear transfer function
model or other clutter components, such as residual response
of rebar pipes.

4) Final Reconstruction: Figures 18 and 19 show the
reconstruction results in this case, of relative permittivity and
conductivity, respectively. The CSI results obtained without
ROI limitation, with 44000 unknowns, reveal no significant
profiles in either case. While the reconstruction around the
true ROI is almost identical to dielectric parameters of the
background concrete media, we can see some divergence of
the estimation outside of the ROI. It implies that the updating
process in the original CSI does not work and the solution
would diverge due to the severe ill-posed condition and some
calibration errors. In contrast, for the CSI with ROI limitation,
the results reveal more accurate reconstruction for dielectric
profiles in each case. Note that, the cases with the RPM based
ROI (Fig. 18-(c) and (d) or Fig. 19-(c) and (d)) retain more
accurate reconstruction than those with the true ROI, implying
that further enhancement of ROI accuracy is promising to
obtain more accurate reconstruction of complex permittivity.
These results are unexpected. However, one possible explana-
tion is that the actual object area did not align precisely with
the true ROI assumed in this case. Achieving a completely flat
thin area between the asphalt and floorboard with a uniform
thickness is challenging. This suggests that the true ROI may
not exactly match with what is illustrated in Fig. 18 or 19.
Furthermore, as previously mentioned, the object should have
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Fig. 18: Reconstruction results of the relative permittivity in
the experiment. Color denotes the relative permittivity. Red
solid rectangular is the boundary of water-filled object area.

a small air void around the upper surface of the water cavity.
This aspect might not have been accounted for in the FDTD-
based simulation model. Additionally, there could be errors in
the calibration process when converting the experimental data
to simulation data.

Finally, Table VI summarizes the RMSE for relative per-
mittivity and conductivity in each case, where each RMSE
is calculated only the true ROI area for fair comparison.
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Fig. 19: Reconstruction results of the conductivity in the
experiment. Color denotes the relative permittivity. Red solid
rectangular is the boundary of water-filled object area.

The table demonstrates that our proposed scheme can provide
a more accurate reconstruction of the relative permittivity
compared to cases without ROI limitation. However, the
reconstruction of the conductivity did not show significant
improvement with our method. This outcome was consistent
with the reasons mentioned in the simulation test detailed
in Section III-B-3. It should be noted that since we refer
the dielectric property of the water-filled material from the
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TABLE VI: RMSE for relative permittivity and conductivity
in the experiment.

Number
of unknowns RMSEϵr

RMSEσ

[S/m]
CSI w/o ROI limit. 44000 75.8 0.52
CSI w/ ROI limit.

(True ROI) 1656 22.1 0.51

CSI w/ ROI limit.
(RPM based ROI) 4428 22.0 0.56

reference [48], there might be difference between the assumed
and actual dielectric parameters of the object. However, we
can conclude that our proposed initial estimate approach would
exclude the possibility that the object is not air filled target, and
contains some high dielectric contrast material, which should
be a reliable basis for decision making of water leakage.

V. CONCLUSION

This study presented an experimental investigation for radar
prior enhanced inverse scattering analysis for quantitative
dielectric profile reconstruction for buried objects into concrete
road models, assuming microwave nondestructive applications.
The RPM-based radar image could considerably reduce the
number of unknowns, thereby enhancing the reconstruction
performance of the post-CSI scheme. Furthermore, the initial
estimate of the permittivity and conductivity for buried object
has been introduced to avoid the local optimal problem. In
addition, the relative permittivity of the background concrete
media has been automatically optimized by exploiting the
focusing response of the rebars, which does not require a pre-
liminary knowledge of the rebar depth and its cover thickness.
The numerical and experimental testbed, assuming a real road
model with asphalt and floorboard layers, demonstrated that
our proposed scheme is effective for more accurate dielectric
profile extraction compared to the results without ROI limita-
tion, providing a promising solution for object characterization
of high dielectric contrast object, as a water-filled cavity in
a concrete road crack, where the data are provided by the
commercial radar equipment. Notably, the improvement of the
reconstruction accuracy for conductivity was not considerable,
compared with that of the permittivity. As a solution for further
improving conductivity reconstruction, we plan to introduce
the cross-correlated optimization algorithm between relative
permittivity and conductivity, focusing on the correlated re-
lation between them. This will help to suppress solution
divergence, particularly in the variable for conductivity. Our
current project is for extension to the 3-D model to tackle
larger-scale investigations of real-world road scenarios.
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