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Abstract— Due to its high resolution and deep penetration
depth, microwave ultrawideband radar is a promising tool for
the non-destructive testing (NDT) of transportation infrastruc-
ture. Microwave radiation can also be used to reconstruct the
dielectric properties of objects and therefore can be used to
detect an air cavity or metallic rust in concrete. We used
contrast source inversion (CSI) as one of the most promising
inverse scattering schemes. To resolve the observation domain
limitations of NDT, radar imaging method, also known as range
points migration (RPM) method, was first incorporated into
the inverse scattering algorithm based on CSI as a region
of interest (ROI) estimator, which substantially improves the
accuracy of complex permittivity reconstruction. In addition,
the ROI optimizing scheme based on the CSI cost function
is used to enhance ROI accuracy. The effectiveness of the
proposed methods is validated via finite-difference time-domain
(FDTD)-based numerical simulation, which assumes typical
NDT model.

Index Terms— Contrast source inversion method (CSI), inverse
scattering problem, microwave non-destructive testing (NDT),
radar imaging, range points migration (RPM).

I. INTRODUCTION

THE aging of transportation infrastructure such as tunnels
and highways predisposes them to a higher risk of

collapse or severe damage by an earthquake, which frequently
occurs in Japan. A significant percentage of Japanese trans-
portation infrastructure was built during the high economic
growth period. In the next 15 years, the ratio of facilities
50 years or older is expected to rapidly rise. Thus, a speedy
and accurate nondestructive inspection technique is urgently
needed. The conditions inside concrete structures such as
bridges and tunnels can be inspected using traditional tools
such as ultrasonic testing and hammer tests. Sensors used for
ultrasonic testing are inexpensive and provide high resolution.
However, they suffer from severe attenuation while propagat-
ing in the air. The hammer test is another traditional inspection
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tool in which a hammer is used to tap a concrete structure,
and the presence of cavities inside the concrete is determined
based on the differences in the resulting sound. This method
also requires proximity to the test site. Thus, both methods
require contact measurement, and a large-scale inspection
costs a substantial amount of time and expenses. In contrast,
microwave nondestructive testing (NDT) enables noncontact
and in situ assessment of microcracking, porosity, chloride
ingress, or corroded reinforced rod in aging infrastructure [1].
Microwave-based NDT techniques have many advantages over
ultrasonic and hammer tests because they provide deep pen-
etration depth and higher range resolution while preventing
severe propagation losses in the air [2].

Various methods have been developed for microwave imag-
ing for subsurface imaging scenarios. These methods can
be categorized into two types. The first type is the radar
approach based on coherent or incoherent integration of reflec-
tion signals. This type provides the position and shape of
buried objects such as air, plastic, or metallic materials with
relatively high contrast from those of concrete. Most radar
approaches are based on the coherent integration process, such
as synthetic aperture radar (SAR) [3], [4], multidimensional
beam-forming, and the Kirchhoff migration method [5], [6].
In addition, a more accurate and higher spatial resolution radar
imaging approach called the range points migration (RPM)
method has been developed [7]. The RPM method converts
the measured range-associated sensor locations (called range
points) to corresponding scattering centers on the object’s
boundary. Its effectiveness has been demonstrated in many
studies, including NDT [8], [9], [10]. However, these methods
do not extract quantitative values of the dielectric properties
of objects, such as complex permittivity. Some studies [11]
demonstrated that different rust types (e.g., black rust, salt rust,
and red rust) exhibit different complex permittivities; thus,
quantitative material characterization becomes important for
NDT [12], [13].

The second type of microwave imaging method is inverse
scattering analysis based on the solution of the domain inte-
gral equation. This type offers a quantitative estimate of
the complex permittivity map. However, the above inverse
problem has a nonlinear and ill-posed nature. Thus, several
approaches, such as diffraction tomography, born iterative
method (BIM), distorted BIM (DBIM) [14], [15], and contrast
source inversion (CSI) [16], [17], [18], are used to solve
the above type of inverse problem, where various types of
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extensions have been introduced such as multiplicative regu-
larization (MR)-CSI, cross-correlated (CR)-CSI [19], contrast
source extended born inversion (CSEB) [20], or finite-element
method (FEM)-CSI [21]. Focusing on the CSI scheme, signif-
icant performances have been reported in biomedical appli-
cations [22], [23], [24], such as ground-penetrating radar-
based subsurface imaging [25], [26], [27], [28], [29], [30], and
through-the-wall imaging applications [31], [32]. However,
for a typical NDT scenario, the tomographic measurement
data are hardly available, and the traditional inverse scattering
algorithms might face a fatal problem due to the lack of
measured data. In addition, a large number of unknowns
should be processed for a large-scale search area, which incurs
high computational costs and introduces inaccuracies. One of
the promising approaches is based on sparse regularization
schemes such as compressed sensing, and various algorithms,
including the NDT model [33], [34], have been introduced,
where the linear or non-linear data conversion is introduced
to represent the sparse model. In addition, the hybrid approach
with a deep learning scheme to the non-linear inverse scatter-
ing problem has been recently developed [35], [36], where an
intrinsic non-linearity due to a high-contrast object could be
solved by a complex-valued convolution neural network.

Given this background and the limitations of existing
approaches, this article proposes a bi-directional updating
algorithm between radar and tomographic images, developing
on the basic idea proposed in [37] and [38], but they are based
on the DBIM. The CSI method was used as its effectiveness
has been demonstrated in various applications. In the proposed
method, at first, the region of interest (ROI) in the CSI
formulation was limited to the vicinity area around the object,
which is estimated by the radar-based RPM method [10]. The
RPM offers an accurate estimate of the ROI and reduces the
number of unknowns processed in the CSI, thereby enhancing
the reconstruction accuracy and convergence speed, even in
significantly ill-posed situations. This is an advantage of the
proposed method, which involves one direction of processing
from the radar to tomography, to enhance the CSI’s recon-
struction performance. On the contrary, an RPM image forms
a point-cloud image, and the proposed method converts the
RPM image to a distributed image via a Gaussian mixture
model (GMM), using a CSI cost function to determine an
appropriate ROI for the CSI method. This is the reversal
direction, namely, from tomography to radar, which enhances
the ROI accuracy. While there have been several studies on
ROI limitation or multiscale reconstruction in the inverse
scattering scheme [23], [39], [40], [41], these approaches have
not considered simultaneously optimizing between radar and
inverse scattering analysis, However, this study introduces a
novel radar imaging method as RPM in which its limiting ROI
is optimized using the CSI cost function. To summarize, the
novelty of this study relies on the fact that the RPM-based
ROI limitation is first applied to the CSI inversion scheme
to enhance the reconstruction accuracy in both the ROI and
dielectric property of buried objects. The finite-difference
time-domain (FDTD)-based numerical tests, which assumed
a typical NDT situation in which an air cavity and some types
of metallic rusts were buried in concrete, demonstrated that

Fig. 1. Observation model.

the ROI limited scheme, rather than the original CSI, would
be effective for more accurate dielectric profile reconstruction,
and the ROI optimizing scheme would significantly improve
the shape and location of objects.

II. METHOD

A. Observation Model

Fig. 1 shows a general observation model being applicable
to the method presented in this article, where a homogeneous,
low-loss, and nondispersive dielectric background medium
was assumed. A number of transmitting and receiving antennas
were arranged in front of the background media. ET(ω; r t, r r)
expresses a total electric field recorded at a receiver located
with position r r, which is scattered by media including objects
from the source point with position r t , at a specific angular
frequency ω. In this 2-D model, we assume the transverse
magnetic mode wave in the exciting source, and thus a single
polarization component along the z-axis is considered. Then,
its scattered electric field ES(ω; r t , rr ) is denoted as follows:

ES(ω; r t , rr ) ≡ ET(ω; r t , rr ) − E I(ω; r t , rr ) (1)

E I(ω; r t , rr ) denotes the incident electric fields measured in
the case without objects. �S and �D denote regions including
the observation array and object, respectively. Note that a com-
plex permittivity of background media is provided. Here, the
inverse transform of ES(ω; r t, r r) is defined as e(t; r t, r r), and
its filter output (e.g., matched filter) is defined as e(R; r t, r r),
where R = ct/2, t is time and c is the speed of light in
the air. The range points extracted from the local maxima of
e(t; r t, r r) to R are divided into two groups. One is defined
as q1,i ≡ (r t,i , r r,i , R1,i ), where each member has a maximum
e(t; r t, r r) to R. The remaining range points are classified
as q2,i ≡ (r t,i , rr,i , R2,i ). Note that R1 defined in q1 is the
distance from the observation point to a surface of concrete
media propagating in air, whereas R2 − R1 with q2 is the
distance from a concrete surface to an object propagating into
concrete media. To deal with these variables uniformly, they
are first defined using the propagation speed in the air.

B. Contrast Source Inversion (CSI)

In this study, we focused on CSI as one of the most
promising inverse scattering algorithms for NDT via dielectric
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profile reconstruction because it enables us to reconstruct
a dielectric profile without requiring an iterative calculation
by a forward solver. This section summarizes the theory
and methodology of the original CSI. Here, to simplify the
notation in each variable, ET(ω; r t , rr ), E I(ω; r t , rr ), and
ES(ω; r t , rr ) are redefined as ET

j,k(rr ), E I
j,k(rr ) and ES

j,k(rr ),
respectively, where k and j denote the index number of
the sources and frequency, respectively. The scattered field,
ES

j,k(rr ), is defined using the following domain integral as
follows:

ES
j,k(rr ) ≡ ET

j,k(rr ) − E I
j,k(rr )

= k2
b

∫
�D

Gb
j (rr , r ′)ET

j,k(r ′)O j (r ′)d r ′, (rr ∈ �S)

(2)

where kb and Gb
j(rr , r ′) represent the wavenumber and

Green’s function of the background media, respectively. �S

and �D are defined as the observation domain and the object
domain, also known as the ROI, respectively. ET

j,k(r) denotes
the total field, whereas O j (r) = (ε j (r) − εb, j (r))/εb, j (r)
represents the contrast function, where ε(r) and εb(r) denote
the complex permittivities of the object and background media
at location r, respectively.

Here we introduce a variable defined as w j,k(r) ≡
O j (r)ET

j,k(r), known as “contrast source.” Using this variable,
(2) can be rewritten as follows:

ES
j,k(rr ) ≡ ET

j,k(rr ) − E I
j,k(rr )

= k2
b

∫
�D

Gb
j (rr , r ′)w j,k(r ′)d r ′, (rr ∈ �S). (3)

Equation (3), also called the data equation, expresses the
same physical phenomena as (2). Notably, instead of using
the forward solver, the following equation holds for the CSI
method:
ET

j,k(r) = E I
j,k(r) + k2

b

∫
�D

Gb
j (r, r ′)w j,k(r ′)d r ′, (r ∈ �D).

(4)

Equation (4), also called the state equation, is also derived
from (2). Note that, this equation is used to obtain the total
field in any location within the object domain �D, namely,
the ROI, and since ET

j,k(r) is included on both sides of
the equation, it expresses the nonlinearity of the scattering
phenomenon, including multiple scattering. The solution to
the “state equation” corresponds to the solution obtained by
the assumed forward problem. The original CSI introduces the
following cost function:
F(w j,k(r), O j (r)) ≡ F S(w j,k(r)) +F D(w j,k(r), O j (r)) (5)

where

F S(w j,k(r))

≡ 1

J

∑
j

∑
k

∥∥ES
j,k(rr ) − k2

b

∫
�D

Gb
j(rr , r ′)w j,k(r ′)d r ′∥∥2

�S∑
k

∥∥ES
j,k(rr )

∥∥2
�S

(6)

F D(w j,k(r), O j (r))

≡ 1

J

∑
j

∑
k

∥∥O j (r)ET
j,k(r) − w j,k(r)

∥∥2
�D∑

k

∥∥O j (r)E I
j,k(r)

∥∥2
�D

(7)

holds. Equations (7) and (6) denote the normalized residual
between the left and right sides of (2) and (4), respectively.
Here, ‖∗‖�S,�D denotes l2 norm on �S and �D. The CSI
reconstructs O j (r), by sequentially updating w j,k(r), O j (r)
and ET

j,k(r) to minimize the cost function in (5). A notable
feature of the CSI is that it avoids the use of computationally
expensive forward solvers (e.g., FDTD), by simultaneously
solving the “data” and “state” equations.

C. Bi-Directional Updating Algorithm With CSI and RPM

Generally, while CSI assumes that tomographic observation,
namely, omnidirectional scattered data, is available in the NDT
model, such omnidirectional data are hardly available, which
makes the problem more ill-posed and incurs inaccuracies
or sluggish convergence in the reconstruction. However, it is
expected that an air cavity, crack, or reinforced pipe with
erosion is sparsely distributed in most cases; hence, the ROI
restriction for the above objects would only significantly
decrease the number of unknowns. Nonetheless, an accurate
ROI is required as prior information for the inverse scattering
algorithm. As a solution to the above issue, this article intro-
duces a radar-based ROI restriction and updating scheme for
the CSI method to obtain a more accurate and computationally
efficient solution.

The major approach for radar imaging is based on the coher-
ent integration process, represented by SAR, range migration
algorithm (RMA), or Kirchhoff migration, where the azimuth
resolution can be enhanced by a coherent process. The process
has been demonstrated in various observation models, includ-
ing subsurface imaging. However, the spatial resolution or
accuracy of the method is limited for the shape reconstruction
of buried objects because coherent-based algorithms assume
that the scattering point is invariant with respect to the
observation point, and in the case of continuously shaped
boundaries, the dominant scattering center moves along its
boundary, thereby making the above assumption invalid and
incurring inaccuracy in shape estimation. In addition, the
coherent process can generate false images due to speckle
noise or the grating-lobe effect, and its computational cost
severely depends on the imaging area and often becomes
significantly large as it includes an entire portion of the
background concrete media.

1) RPM Image Prior for ROI Limitation: To overcome
the above difficulties associated with coherent-based radar
imaging, the RPM was developed and demonstrated in the
NDT observation model [10]. It focuses on the boundary
extraction of buried objects, where discrete observation points,
named range points, are accurately converted to their corre-
sponding scattering centers on the boundary. Here, assuming
a typical NDT scenario, each object (e.g., air cavity, metallic
rust, or other cracks) is sparsely distributed in the homoge-
neous background media (i.e., concrete media). Under this
assumption, the ROI can be determined by the proximity area
of scattering centers reconstructed by the RPM method [8].
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Fig. 2. Converting from RPM point cloud image to 2-D distributed Gaussian
kernel image.

Here, we briefly describe the principle of the RPM method
as follows. As described in Section II-A, discrete data points
(known as range points), q1,i and q2,i , are observed at each
sensor location. RPM then converts the range point, q2,i , to the
corresponding scattering center p(q2,i ) as follows:

p̂(q2,i ) = arg max
pint

i,k

∑
j

|s(q2, j )| exp

{
−‖r2,i − r2, j‖2

2σ 2
X

}

× exp

{
−

∥∥ pint
i, j − pint

i,k

∥∥2

2σ 2
r

}
exp

{
−|R2,m − R2, j |2

2σ 2
R

}
.

(8)

Here pint
i, j is the intersection point among orbits in the propaga-

tion paths determined by q2,i and q2, j , which are determined
by the dielectric constants of the background media. σX and σr

are constant parameters. Specifically, σr should be determined
using a spatial profile of the accumulated intersection points,
which could be determined by an aperture angle, and σD

should be set with a couple of sensor intervals, more details
are described in [7]. A number of studies have demonstrated
that RPM can accurately determine the scattering center points
on the object boundary, even if the received signal includes
multiple reflections. Moreover, the distribution of range points
can become significantly complicated leading to a heavily
interfered situation. Furthermore, since the conversion process
is incoherently done, it could prevent unnecessary responses
due to sidelobes or speckles. The RPM methodology is simple,
and the computational time it requires depends on the number

Fig. 3. Conceptual illustration for optimizing the threshold α from the
Gaussian kernel-based radar image I RPM(r) and the processing of the pro-
posed method.

of targets rather than the scale of the background media.
This method is also promising for sparsely distributed profiles
assumed in NDT models. Note that, if the observation area
�S fully surrounds each object buried in concrete media, it
is possible to reconstruct an entire area of the object surface,
providing a complete ROI boundary. However, in a typical
NDT model, �S is significantly limited to the area in front of
the concrete surface (Fig. 1), and the radar-based ROI could
be difficult to estimate the entire boundary of each ROI.

2) ROI Optimization by Incorporating RPM and CSI: A
procedure for how the proposed method exploits a group of
scattering center points reconstructed by the RPM as the prior
estimation of the ROI is provided as follows. To convert the
RPM point-could image to a distributed image as I RPM(r), the
following 2-D GMM is introduced as follows:

I RPM(r) =
N∑

k=1

πkN (r | μk,�k)

=
N∑

k=1

πk√
(2π)m|�k |

× exp

{
−1

2
(r − μk)

T�−1(r − μk)

}
(9)

where N is the number of clusters. πk , μk , and �k denote
weights, mean vector, and covariance matrix, respectively, for
kth cluster. The parameters πk,μk,�k could be simultane-
ously optimized in the maximum likelihood procedure using
the expectation maximization (EM) algorithm [42]. Fig. 2
shows the conversion of the RPM point-cloud image to the
2-D distributed image using the GMM model.
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To determine the ROI area, the profile of I RPM
BI (r) is defined

as binary expression

I RPM
BI (r; α) ≡

{
1,

(
I RPM(r) ≥ α max

r
I RPM(r)

)
0, (otherwise)

(10)

where α denotes the threshold. Then, the ROI is redefined as
follows:

�̃(r; α) = {
r
∣∣I RPM

BI (r; α) > 0
}
. (11)

The selected ROI is determined by the value of the threshold
of α. The proposed method optimizes the α by the following
equation to obtain an appropriate ROI:
α̂ = arg min

α

{
F̃S

(
w j,k(r); �̃(r; α)

)
+ F̃D(

w j,k(r), O j (r); �̃(r; α)
)}

(12)

where

F̃ S(w j,k(r); �̃(r; α))

≡ 1

J

∑
j

∑
k

∥∥ES
j,k(rr ) − k2

b

∫
�̃(r ;α)

Gb
j(rr , r ′)w j,k(r ′)d r ′∥∥2

�S∑
k

∥∥ES
j,k(rr )

∥∥2
�S

(13)

F̃D
(
w j,k(r), O j (r); �̃(r; α)

)
≡ 1

J

∑
j

∑
k

∥∥O j (r)ET
j,k(r) − w j,k(r)

∥∥2
�̃(r;α)∑

k

∥∥O j (r)E I
j,k(r)

∥∥2
�̃(r;α)

(14)

holds. Here, the residual of the cost function denoted
as F̃ S(w j,k(r); �̃(r; α)) and F̃D(w j,k(r), O j (r); �̃(r; α)) is
assessed in the early stage of the iteration step in the CSI
as Ninit steps, to assess the dependency of the convergence
speed as to α, because it is assumed that if an appropriate
ROI is selected, the cost function would rapidly decrease.
This algorithm is based on the justification that if the ROI
is correctly selected, the CSI will reconstruct an accurate
complex permittivity profile, implying that the residual of the
CSI’s cost function in (5) will also become small. According
to this inference, if the residual of the cost function is minimal,
the selected ROI will be close to the true ROI, and the
threshold parameter α will be optimized by minimizing the
cost function in the CSI. Fig. 3 shows a schematic of how
to use the CSI cost function to optimize the threshold of the
RPM point-could image.

Finally, the CSI with a limited ROI denoted as �̃(r; α)
is performed. Because the targets (e.g., air cavity or metallic
pipe) are significantly small compared with the background
media, this process reduces the number of unknowns to be
estimated in the actual NDT for transportation infrastructure.
The proposed method can then improve accuracy not only for
the ROI estimate but also for dielectric profile reconstruction
using the CSI scheme.

III. PERFORMANCE EVALUATION VIA FDTD NUMERICAL

ANALYSIS

A. Numerical Setting

In this section, the reconstruction performance with quan-
titative evaluation based on 2-D FDTD numerical data is

TABLE I

DIELECTRIC PROPERTIES AND SIZE OF BACKGROUND
MEDIUM AND EACH TARGET

demonstrated. Fig. 4 shows that the target and array config-
uration assumed in this numerical test is the specific NDT
model. The 27 sets of transmitting and receiving antennas
are linearly arranged with 30 mm equal spacing, 158 mm
from the concrete surface. All the combination data for the
transmitting and receiving antennas are exploited for the
reconstruction; hence, multistatic observation is assumed. The
transmitted signal is assumed to be an ultrawideband pulse
formed by a Gaussian-modulated pulse with a center frequency
of 2.45 GHz and a bandwidth of 2.7 GHz. Point-form source
and receiver are assumed in this simulation, for simplicity. The
background media is constituted by a concrete material, and
five different types of targets, such as air cavity and different
types of metallic rusts, are buried in the concrete media. The
size and dielectric properties of the concrete media and each
target [11] are summarized in Table I. In this simulation, the
dimension and dielectric property of the background concrete
media is given. Note that, the literature [11] demonstrated
complex permittivity of concrete media or each object did not
have a significant frequency dependency for this frequency
band, and in this case, a non-dispersive media or object is
assumed in the FDTD data generation. In both CSI, the cell
size for the forward (FDTD) and inverse solutions is 2 mm
square. In addition, the FDTD method numerically provides
Green’s function of the background media, which is concrete
media without an object. The total number of unknowns,
including the concrete (background) media, is 40 240. The
center wavelength and the range resolution in the background
media are approximately estimated as 46 and 42 mm, respec-
tively. Note that, any target size assumed is less than a
wavelength or the range resolution.

B. Initial Results of RPM Image

First, we present the results of RPM imaging and the
2-D Gaussian kernel-based distribution image as I RPM(r),
which is described in Section II-C1. The scattering center
points are estimated using RPM and the distributed image
generated in (9), and the extracted ROI using the specific
threshold, where each RPM parameter is set as σX 2.0 mm
and σr = 1.0 mm, is shown in Fig. 5. As shown in Fig. 5,
the RPM accurately reconstructs the location of the scattering
center on each target boundary, which cannot be obtained
by conventional coherent integration methods such as SAR
or RMA due to speckle noise or grating lobe, has been
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Fig. 4. True profiles in numerical simulation model. (a) Relative permittivity. (b) Conductivity.

Fig. 5. Point cloud (a) RPM image p̂(q2,i ) and (b) Gauss kernel conversion image I RPM(r).

Fig. 6. Reconstruction profiles by DBIM method in relative permittivity. Magenta dots denote the selected ROI. Color scale denotes a relative permittivity.
(a)–(e) Original profile (first line). (f)–(j) DBIM without ROI limitation (second line).

demonstrated in a similar test in [8]. These figures also indicate
that we must determine the appropriate threshold α to extract
accurate ROI for post CSI processing.

C. Reconstruction Results for Relative Permittivity and
Conductivity

Next, we investigate CSI-based reconstruction methods,
described in Section II-B, namely, with or without ROI
limitation. The maximum iteration number of the CSI was

set to 4096, and single-frequency data as 3.68 GHz was
used. Figs. 6 and 7 show the original profile of each tar-
get for relative permittivity and conductivity, respectively.
At first, for the method comparison of other promising inver-
sion scheme, Figs. 6(f)–(i) and 7(f)–(i) shows the recon-
struction of the DBIM, where five different frequency data
(1.15, 1.61, 2.53, 3.22, 3.68) GHz are used with the maximum
iteration number set to 100, and the conjugate gradient least
square (CGLS) algorithm is used to update the χ j (r), the
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Fig. 7. Reconstruction profiles by DBIM method in conductivity. Magenta dots denote the selected ROI. Color scale denotes a conductivity (S/m). (a)–(e)
Original profile (first line). (f)–(j) DBIM without ROI limitation (second line).

Fig. 8. Reconstruction results by for each CSI-based method in relative permittivity. Magenta dots denote the selected ROI. Color scale denotes a relative
permittivity. (a)–(e) CSI without ROI limitation (first line). (f)–(j) CSI with true ROI limitation (second line). (k)–(o) CSI with initial ROI limitation (third
line). (p)–(t): CSI with optimized ROI limitation (proposed method) (fourth line).

details of which have been published in some studies such
as [15]. These results demonstrate that the original DBIM
(without ROI limitation) method could not provide an accurate
profile of each target, most of which are similar to background
media. This is because the number of unknowns is significantly
larger than that of data samples, and note that the DBIM
requires a forward solver calculation in each iteration step,
which requires more computational cost than that required in
the CSI.

Furthermore, Figs. 8 and 9 show the results using the CSI-
based reconstruction, where the ROI is not limited or limited

by the true ROI, the initial ROI, or the optimized ROI. Here,
we called the case as the initial ROI, where the ROI threshold
is fixed sufficiently lower. First, in focusing on the case that
the ROI is not limited [Figs. 8(a)–(e) and 9(a)–(e)], but is
given as a whole area of the background, the CSI-based
reconstruction scheme does not provide meaningful results,
which is far from the original profile, this is because the
number of ROI including the whole background area goes
to 40 240, which is quite larger than that of data as 729
(27 × 27). On the contrary, if we give the true ROI, the
CSI could provide quite an accurate dielectric profile both in
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Fig. 9. Reconstruction results by for each CSI-based method in relative permittivity. Magenta dots denote the selected ROI. Color scale denotes a conductivity
with a unit of S/m. (a)–(e) CSI without ROI limitation (first line). (f)–(j) CSI with true ROI limitation (second line). (k)–(o) CSI with initial ROI limitation
(third line). (p)–(t) CSI with optimized ROI limitation (proposed method) (fourth line).

Fig. 10. Transition of cost function versus iteration steps in each case.
Black and red curves denote the residuals of the cost function of the CSI in
the case for with true and optimized ROI cases, respectively, in the case of
Section III-C.

relative permittivity and conductivity as shown in Figs. 8(f)–(j)
and 9(f)–(j), demonstrating that our proposed scheme is much
effective to reconstruct a sparsely distributed target. This is
because the size of each object is significantly smaller than
the wavelength, and thus, a small number of unknowns would
be allocated, which alleviates an ill-posedness. However, the
ROI, that is, the shape or location of each object, would not
be provided as prior knowledge when considering the realistic
NDT operation, so the ROI estimation is required.

TABLE II

TOTAL COMPUTATIONAL TIME FOR RECONSTRUCTION BY EACH METHOD
IN THE CASE OF SECTION III-C

The results in Figs. 8(k)–(o) and 9(k)–(o) show the results
using the initial ROI. Also, in Figs. 8(p)–(t) and 9(p)–(t) show
the CSI-based reconstruction, where the ROI is optimized
using the algorithm described in Section II-C2. Ninit = 20 is
set to determine the threshold α in (12). Here, the number
of unknown cells is downsized from 40 240 (whole area of
background) to to 246 (99.4% reduced) by the ROI opti-
mization of the proposed method. First, the CSI result with
ROI limitation provides a more accurate dielectric profile than
the original CSI, which is without ROI limitation because
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Fig. 11. Reconstruction results by CSI-based methods with true and optimized ROI limitations in relative permittivity at the case of SNR is 20 dB. Magenta
dots denote the selected ROI. Color scale denotes a relative permittivity. (a)–(e) CSI without ROI limitation (first line). (f)–(j) CSI with true ROI limitation
(second line). (k)–(o) CSI with initial ROI limitation (third line). (p)–(t): CSI with optimized ROI limitation (proposed method) (fourth line).

TABLE III

RMSEε AND RMSEσ FOR RECONSTRUCTION RESULTS OF (εr , σ [S/m]) BY EACH CSI ALGORITHM IN THE CASE OF SECTION III-C

the number of unknowns is remarkably reduced. Second,
compared with the initial estimate, the ROI optimizing scheme
provides a more accurate ROI. However, the reconstruction
results still have errors in the dielectric profile and ROI
because the Gaussian kernel-distributed image could not nec-
essarily express the actual ROI because of the RPM imaging
limitations. Nonetheless, these results by the proposed scheme
have significance, because the inverse problem model assumed
in this study is extremely difficult, in terms of ill-posed
conditions or limitations of illumination angles, and each target
has a size within a wavelength, the shape of which could not be
accurately determined by the traditional radar approach, such
as SAR. Furthermore, Table II summarizes the computational
time for the inversion in each method, using Intel(R) Xeon(R)
CPU E5-2620 2.4 GHz and 128 GB RAM. This table also
demonstrates that the proposed method considerably reduces
the computational cost, compared with the original DBIM
or CSI, by reducing the number of unknowns. In addition,
the transition of the residual of the cost function to show
convergence in each case is shown in Fig. 10. When we obtain

the true ROI, the cost function rapidly decreases compared to
the case using the estimated ROI in the proposed method. This
fact is the basis of the proposed method for optimizing the
ROI selection threshold parameter α in a few iteration steps
by referring to the residual of the cost function.

Table III summarizes the quantitative error analysis in
terms of the root mean square error (RMSE) for the relative
permittivity and conductivity for each target defined as
follows:

RMSEε =
√√√√ 1

N

N∑
i=1

|εtrue(r i) − εest(r i)|2 (15)

RMSEσ =
√√√√ 1

N

N∑
i=1

|σ true(r i ) − σ est(r i )|2 (16)

where εtrue(r i) and εest(r i ) denote the original and recon-
structed relative permittivities at the position on r i , respec-
tively. σ true(r i) and σ est(r i) are the conductivity, which is
defined in the same way as relative permittivity. N denotes
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Fig. 12. Reconstruction results by CSI-based methods with true and optimized ROI limitations in conductivity at the case of SNR is 20 dB. Magenta dots
denote the selected ROI. Color scale denotes a conductivity with a unit of S/m. (a)–(e) CSI without ROI limitation (first line). (f)–(j) CSI with true ROI
limitation (second line). (k)–(o) CSI with initial ROI limitation (third line). (p)–(t) CSI with optimized ROI limitation (proposed method) (fourth line).

the number of cells allocated to each area (Fig. 8), including
the actual ROI. In addition, quantitatively validate the ROI
updating performance, the relative errors for ROI of the i th
object is introduced as follows:

Err�D,i =
∫∫ ∣∣ηtrue

i (r) − ηest
i (r)

∣∣d r∫∫ ∣∣ηtrue
i (r)

∣∣d r
(17)

where ηtrue
i (r) and ηest

i (r) are defined as follows:

ηtrue
i (r) =

{
1,

(
r ∈ �true

D,i

)
0, (otherwise)

(18)

ηest
i (r) =

{
1,

(
r ∈ �est

D,i

)
0, (otherwise)

(19)

where �true
D,i and �est

D,i denote the true and estimated ROI for
i th object, respectively. Table IV shows the relative errors
Err�D,i in each object for the reconstructed ROI in the proposed
method. This table shows that the proposed method, CSI with
ROI limitation, efficiently enhances reconstruction accuracy
for both relative permittivity and conductivity compared to the
original CSI without ROI limitation. Furthermore, as compared
to the initial ROI, ROI optimization provides a significantly
more accurate target shape and location, which would be diffi-
cult to achieve using the conventional radar imaging technique
in such a frequency band.

D. Sensitivity to Additive Noise

In this section, we investigate the sensitivity of additive
random noise in each method. In the time domain, Gaussian
white noise is directly added to the scattered electric field.

TABLE IV

Err�D,i FOR EACH TARGET IN THE CASE OF SECTION III-C

TABLE V

RMSEε AND RMSEσ FOR RECONSTRUCTION RESULTS OF (εr , σ [S/m]) AT

THE CASE OF SNR IS 20 dB

The signal-to-noise ratio (SNR) is defined as the time domain
ratio of maximum signal power to the noise variance. Here,
the case of 20 dB SNR is investigated, which is available in
a realistic scenario, as in [10]. The reconstruction results for
each target demonstrate that the proposed method maintains
its reconstruction accuracy in this scenario and is shown in
Figs. 11 and 12. The normalized RMSE (NRMSE) for relative
permittivity and conductivity and the relative errors for the
selected ROI are summarized in Tables V and VI, respectively.
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Fig. 13. Numerical model, point cloud RPM image p̂(q2,i ) and the Gauss kernel conversion image I RPM(r) in Section III-E. (a) Observation and target
model. (b) RPM image p̂(q2,i ). (c) Gauss kernel image I RPM(r).

TABLE VI

Err�D,i FOR EACH TARGET AT THE CASE OF SNR IS 20 dB

TABLE VII

RMSEε AND RMSEσ OF THE RESULTS IN FIGS. 14 AND 15 USING THE

MODEL IN FIG. 13

While the RPM’s ROI estimation is affected by random noise,
its accuracy is maintained in a noisy scenario. This is because
the RPM uses the range points extracted from the matched
filter, which is the most noise-robust filter, and the RPM
exploits all range points to reconstruct the scattering center for

TABLE VIII

RMSE�D,i [mm2] FOR EACH TARGET IN FIG. 13 IN USING THE MODEL IN

FIG. 13

q2,i , which would contribute some averaging effect, its noise-
robustness has been demonstrated in the detail in [7] and [8].
In addition, the reconstruction results of complex permittivity
by the CSI-based method, are not significantly degraded
compared with those obtained in the noise-free cases, because
the CSI uses scattered data around the center frequency, which
has the highest SNR level than other frequencies. These results
demonstrate that our proposed method would work well in the
actual noisy scenarios.

E. Case in Highly Lossy Background and Complicated Shape
Object

In this section, different observation conditions or object
shapes are considered in numerical testing. The other numer-
ical model assumed in this section is shown in Fig. 13.
Because humid concrete media would cause rustic corrosion,
we assumed more lossy background media by setting the
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Fig. 14. Reconstruction results by CSI-based methods with or without ROI limitations in relative permittivity using the model in Fig. 13. Magenta dots
denote the selected ROI. Color scale denotes a relative permittivity. (a)–(e) Original profile (first line). (f)–(j) CSI without ROI limitation (second line). (k)–(o)
CSI with true ROI limitation (third line). (p)–(t) CSI with initial ROI limitation (fourth line). (u)–(y) CSI with optimized ROI limitation (proposed method)
(fifth line).

conductivity to 0.01 m/S, which is ten times higher than in
the previous case. In addition, to assess the influence of the
sensor locations, we reset the positions of the observation
sample to be closer to the surface of concrete media (Fig. 13).
Furthermore, to consider off-grid object shapes, various types
of irregular shapes, such as triangular, circle, hexagon, rectan-
gular with notches, were assumed (Fig. 13). Other numerical
setups such as cell size and induced current waveform, are the
same as those in Section III-A. Fig. 13(b) and (c) denote the
RPM reconstruction points and its generated distributed image
by Gaussian kernel, and demonstrates that the RPM offers an
accurate target area even in such complicated target shape.
Figs. 14 and 15 show the reconstruction results for each object
using the true, the initial, and the optimized ROI-based CSI
method in relative permittivity and conductivity, respectively.
The parameters in the CSI are set to the same used in the
previous model. As shown in these figures, when we give

the true ROI, the CSI offers accurate dielectric profiles in
both permittivity and conductivity. Also, the proposed method,
namely the CSI with the optimized ROI, provides a certain
level of accuracy by limiting the ROI results and provides more
accurate ROI, rather than those in the initial estimate. How-
ever, there are still non-negligible errors in the ROI estimation,
especially for four targets, because the RPM could provide the
scattering center points of the front side of the target boundary
in this observation model, and its backside image could not be
retrieved in such a model. Furthermore, in other target cases,
Tables VII and VIII and denotes the NRMSE for the complex
permittivity and the ROI reconstruction, and these results
quantitatively demonstrate that our proposed method provides
a certain level of accuracy, even in such extremely ill-posed
conditions with no prior knowledge of the target location.
Further investigations and upgrades of the ROI optimizing
schemes should be needed to obtain a more accurate profile.



TAKAHASHI et al.: MICROWAVE SUBSURFACE IMAGING METHOD 11021

Fig. 15. Reconstruction results by CSI-based methods with or without ROI limitations in conductivity using the model in Fig. 13. Magenta dots denote the
selected ROI. Color scale denotes a conductivity with a unit of S/m. (a)–(e) Original profile. (f)–(j) CSI without ROI limitation (second line). (k)–(o) CSI
with true ROI limitation (third line). (p)–(t) CSI with initial ROI limitation (fourth line). (u)–(y) CSI with optimized ROI limitation (proposed method) (fifth
line).

IV. CONCLUSION

We presented a microwave NDT observation model incor-
porating RPM radar imagery and the CSI-based reconstruction
for to characterize embedded objects in concrete material.
The general NDT model does not support omnidirectional
data observation and the inverse problem for dielectric profile
reconstruction becomes severely ill-posed. To resolve the
above difficulty, this study proposed the ROI limitation scheme
to enhance the accuracy of dielectric profile reconstruction by
reducing the number of unknowns, the prior estimation of the
ROI was achieved by an effective radar approach known as the
RPM method. In addition, it introduced the ROI optimizing
scheme using the CSI cost function, to provide a more
accurate ROI. That is, one direction from the RPM to the CSI
improves the reconstruction performance of complex permit-
tivity, whereas the other direction from the CSI to RPM con-
tributes to the ROI optimization, resulting in a bi-directional
optimizing scheme between radar and tomography. Since the

ROI is determined by the RPM, our proposed method does not
need any prior knowledge of the target shape, even in the ROI
update scheme. The 2-D FDTD-based numerical simulations
for the NDT observation model demonstrated that the ROI
limitation scheme considerably enhances the reconstruction
accuracy, compared with that without ROI limitation, espe-
cially in challenging scenarios. In addition, the estimation
accuracy of the ROI was enhanced: the size and location of
buried objects were accurately determined, which would not
be possible through a single use of the RPM method or other
radar imaging methods. Note that the original or proposed
CSI method is used in an arbitrary shape, size, or location
of objects because the domain integration equation in (2),
which is the basis of CSI can be satisfied regardless of the
object’s position, shape, or dielectric profile. However, in a
realistic situation, a rustic component is expected to adhere to
the surface of metallic pipes and such complicate scenarios
should be assessed in our future study.
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