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Contrast Source Inversion-Enhanced Synthetic
Aperture Approach for Microwave Multilayered

Subsurface Imaging
Yoshihiro Yamauchi and Shouhei Kidera , Senior Member, IEEE

Abstract— This article presents an inverse scattering analysis-
enhanced radar imaging method by incorporating synthetic aper-
ture radar (SAR) and contrast source inversion (CSI) to enhance
the imaging accuracy of a microwave ground-penetrating radar
(GPR) model. The GPR SAR propagation model could be
accurately determined via the CSI optimization output, i.e., the
electric total fields of all region of interest (ROI) cells and obser-
vation areas, which generate an accurate Green’s function as
the propagation model in a heterogeneous background medium.
Additionally, the scattered field, assuming a multilayered back-
ground, is reconstructed using a CSI scheme. Numerical tests
based on the finite-difference time domain (FDTD) show that
our proposed method considerably improves the reconstruction
accuracy for target localization, even in highly heterogeneous
multilayered background media.

Index Terms— Contrast source inversion method (CSI),
ground-penetrating radar (GPR), inverse scattering, microwave
subsurface imaging, synthetic aperture radar (SAR).

I. INTRODUCTION

RECENTLY, there has been a high demand for reliable
underground monitoring techniques because water or air

cavity buried in the ground could cause catastrophic collapses
[1]. Microwave ground-penetrating radar (GPR) is among most
promising underground monitoring tools owing to its deeper
penetration depth into the ground at the meter scale using
lower frequency bands, such as under 1 GHz. The GPR is
also promising for various monitoring techniques, such as
the nondestructive inspection of infrastructures, (e.g., roads
or bridges), and the exploration of oil, minerals, and water
resources [2], [3]. In addition, effective monitoring by the
GPR addresses problem where highly efficient and wide-area
surveys are required, such as water leakages due to aging
infrastructure in water and sewage systems or road collapses
caused by the excavation of underground tunnels.
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The main imaging approach used in GPR operations is
synthetic aperture radar (SAR), which offers a high spatial
resolution through antenna scanning and reflectivity coefficient
profile reconstruction [4], [5], [6]. In addition, a sparse regu-
larization approach is used to address the limited data volume
[7], [8]. Nevertheless, it is generally challenging to retrieve the
dielectric properties of underground objects, such as air, water-
filled materials, and metallic objects, from such qualitative
radar images. Thus, the radar-based approach requires an
accurate propagation model from background media. However,
because a single homogeneous medium is adopted as the
propagation model in most cases, there are non-negligible
errors in reconstructing the position or shape of an object
when dealing with heterogeneous background media, such
as multilayer structures, which are usually considered in real
underground structures. While certain techniques for stratified
media exist, such as [6], the majority of them do not account
for the multiple scattering effects among layers or signal
attenuation owing to lossy medium.

The other approach in the GPR operations is nonlinear
inverse scattering (NIS) analysis by solving the domain inte-
gral equation. While the NIS approach can quantitatively
provide a spatial profile of complex permittivity, the above-
mentioned inverse problem is nonlinear and usually requires
massive computational costs, particularly in the 3-D model.
Therefore, various NIS methods have been developed, such
as Born approximation [9], [10] with extensions to the GRP
model [11], [12], [13], and contrast source inversion (CSI)
[14], [15], [16]. There are some efficient approaches, assum-
ing a GPR scenario, such as multi-resolution techniques,
[17], [18], [19], [20], [21] or Bayesian compressed sens-
ing [17], [22], [23], [24], which improve dielectric property
reconstruction accuracy by significantly reducing the num-
ber of unknowns or sparse regularization to counteract the
ill-posedness. The CSI approach can reduce computational
costs to avoid the iterative use of forward solvers, such
as finite-difference time-domain (FDTD), by simultaneously
optimizing the contrast function and total field. Further, using
the CSI approach has been studied extensively for the GPR or
subsurface observation model [25], [26], [27], [28]. However,
it has an inherent problem: the number of data samples
is considerably less than that of unknowns. The ill-posed
condition causes a severe dependency in the initial estimation
in the optimization problem. This ill-posed feature would be
severe in the general GPR model because an illumination
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angle would be considerably limited. To resolve the above
mentioned ill-posed problems, some approaches using the
radar-based region of interest (ROI) limitation have been
developed [29], [30], [31], [32], [33], [34], where an ROI is
allocated only to the existing area of an object. Various studies
have demonstrated that these approaches drastically reduce the
number of unknowns and enhance the reconstruction accuracy
of the complex permittivity profile. However, the propaga-
tion model assuming a homogeneous medium would produce
severe inaccuracy in providing a target shape or location,
(i.e., the ROI), in the case of a heterogeneous background,
such as a multilayered ground structure.

Some studies have tried to generate an accurate radar image
assuming multilayered background by modifying Green’s
function [35]. However, this approach requires several imprac-
tical assumptions, such as completely clutter suppressed
signals, prior knowledge of relative permittivity for each layer,
and ignoring the multipath reflections. To address the above
issue, we introduce a method to generate CSI-based propaga-
tion model for accurate radar imaging even in heterogeneous
background media. In the proposed method, we focus on
the notable features of CSI, such as its ability to provide
the contrast function of the dielectric property, and all the
total fields in the observation and ROI areas. These outputs
enable us to estimate Green’s function in propagating from
the transmitter to the object and from the object to the
receiver. Thus, the CSI approach can provide an accurate
propagation model. Furthermore, the proposed method can
precisely estimate the total field responses for multilayered
background media by exploiting the above CSI outputs. This
exploitation is necessary to reconstruct the profile of an under-
ground object by eliminating other clutter components, such
as multi-reflection among layers. While the fundamental study
for this method has been reported in [36] in the breast tumor
detection issue, it requires some impractical assumptions that
a permittivity profile of background media (breast without
tumor) is known, and the subtraction signals between the case
with and without tumor are accurately provided.

To maintain sufficient accuracy in the CSI results, we intro-
duced a reduction scheme for unknowns, where multiple layers
with homogeneity are assumed [37], and the basic idea has
been also introduced in [38]; however, it only assumes a case
that a dielectric property of each layer is completely given.
Thus, the main contributions of this study are as follows.

1) The CSI-based inverse scattering approach is used to
estimate an appropriate propagation model in the SAR
method. The optimized total field within the ROI facil-
itates an accurate evaluation of the Green’s function.
Further, it generates background clutter due to multilay-
ered media, which can suppress a false image resulting
from the reflections between the layers.

2) The object buried in the multilayered background can be
accurately reconstructed by exploiting the above Green’s
function and by eliminating a clutter response generated
by the outputs of the CSI optimization process.

3) Minimizing the CSI cost function, the initial estimations
of complex permittivity for multilayered background
(three-layered ground) are efficiently reconstructed.

Fig. 1. Observation model. White solid circles denote locations of transmitter
or receiver.

4) The proposed method substantially solves several sig-
nificant problems in existing methods, that is, they
require a prior knowledge for relative permittivity of
each layer, an assumption of clutter free environment,
a computationally expensive forward solver to generate
the Green’s function.

The numerical validations using the 2-D FDTD assuming a
multilayered ground medium show that the proposed method
retains a considerable advantage over the traditional SAR
approaches.

II. OBSERVATION MODEL

Fig. 1 shows the observation model and array configura-
tions in a 2-D model. In the model, several transmitters and
receivers are arranged in a straight line along the y axis,
with their locations denoted as rT and rR, respectively. The
area where these sensors exist is defined as the domain �S.
A multilayered background medium with a planar structure
is set before the above array. ET(ω; rT, rR) is the total
electric field recorded at the receiver rR, where the current
source is induced at the transmitter rT. The multilayered
background medium is placed in the air, with each layer
having a homogeneous profile of complex permittivity. The
scattered electric field at the angular frequency ω is defined
as: ES(ω; rT, rR) ≡ ET(ω; rT, rR) − E I(ω; rT, rR), where
E I(ω; rT, rR) is the incident electric field. �D denotes the
ROI.

III. TRADITIONAL METHODS

A. SAR Method

The SAR approach is the most prominent confocal radar
imaging approach. Furthermore, the SAR imaging process
has been widely introduced in far- and near-field observa-
tion scenarios, such as GPR applications. Among the many
SAR-based inversion algorithms, the delay-and-sum (DAS)
algorithm (i.e., backprojection algorithm) offers the most
accurate radar images. In this case, the radar image I (r) is
calculated as follows:

I (r) =

∑
(rT,rR)∈�S

∫
∞

−∞

ES(ω; rT, rR)

×GB∗

R (ω; r, rR)GB∗

T (ω; rT, r)dω (1)

where ∗ denotes the complex conjugate, GT(ω; rT, r) denotes
the Green’s function from the transmitter position rT to the
imaging point r , and GR(ω; r, rR) is the Green’s function from
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Fig. 2. Green’s functions in SAR imaging in multilayer model.

the imaging point r to the receiver position rR, the illustration
of which is shown in Fig. 2.

Assuming a homogeneous background, which has been
mainly adopted in studies [4] and [5], the above Green’s
functions are approximated as

GB
T(ω; rT, r) ≃ exp

(
j
ω

cB
∥r − rT∥

)
(2)

GB
R(ω; r, rR) ≃ exp

(
j
ω

cB
∥rR − r∥

)
. (3)

Here cB denotes the propagation speed of the assumed back-
ground medium, the ground medium. In most cases, the
propagation speed of the background medium is constant;
that is, a Single-layered homogeneous ground medium is
assumed. However, an actual ground medium has a hetero-
geneous structure, (e.g., multilayered structure with different
dielectric properties). The traditional SAR process produces
non-negligible errors in estimating the position or shape of
a buried object. Conversely, an accurate propagation model
in a heterogeneous background is hardly available. An accu-
rate forward solver, such as the FDTD approach, on the
other hand, necessitates a high computing cost, as dielectric
properties of antennas or other equipment must be accurately
provided. Furthermore, it requires the complete suppression of
clutter signals, which are caused by heterogeneous stratified
media, i.e., multiple reflections among layers. Even if a prior
knowledge of a number or thickness of layers are given,
solely eliminating clutter signals from the received signals can
be challenging, particular in the case of signals constituting
reflections from layers at the same depth as the buried object.

B. Contrast Source Inversion

To overcome these issues, we focus on a distinct feature of
the CSI method, one of the most promising inverse scattering
algorithms [14]. Following the CSI method, the scattered
electric field ES(ω; rT, rR) is first formulated as the following
domain integral equation:

ES(ω; rT, rR) = k2
B

∫
�D

GB(ω; r, rR)w(ω; rT, r)d r. (4)

Here kB and GB(ω; r, rR) denote the wavenumber and Green’s
function of the background media, respectively. χ(ω; r) ≡

(ϵ(r)−ϵB(r))/ϵB(r) is defined as the contrast function, where
ϵ(r) and ϵB(r) are complex permittivities at the position

r with and without an object, respectively. w(ω; rT, r) ≡

χ(ω; r)ET(ω; rT, r) is the contrast source. The CSI method
exploits the physical condition that (4) should hold not only
at �S but also at �D, to introduce the following cost function:

F(χ, w)

≡

∑
rT

∥ES(ω; rT, rR) − GS
[w]∥

2
�S∑

rT
∥ES(ω; rT, rR)∥2

�S

+ λ

∑
rT
∥χ(ω;r)E I(ω;rT,r ′)−w(ω;rT,r)+χ(ω;r)GD

[w]∥
2
�D∑

rT
∥χ(ω; r)E I(ω; rT, r ′)∥2

�D

(5)

where λ denotes the regularization coefficient, and the opera-
tors GS and GD are defined as

GS
[w] = k2

B

∫
�D

GB(ω; rR, r)w(ω; rT, r)d r, (rR ∈ �S)

(6)

GD
[w] = k2

B

∫
�D

GB(ω; r ′, r)w(ω; rT, r)d r, (r ′
∈ �D).

(7)

∥·∥
2
�S

and ∥·∥
2
�D

denote the l2 norms calculated in �S and
�D, respectively. The CSI sequentially updates the three
valuables, w(rT, r), ET(ω; rT, r), and χ(ω; r) with r ∈ �D to
minimize the cost function (5). The CSI considerably reduces
the computational cost by avoiding an iterative use of the
forward solver, because the total field ET(ω; rT, r) in the ROI
is optimized. This distinguishing feature of CSI is exploited
in an extended SAR imaging scenario.

IV. PROPOSED METHOD

To address the problem of traditional SAR method,
i.e., inaccuracy in the heterogeneous background, we propose
a CSI-enhanced SAR method.

A. Initial Estimate of Multilayered Background Media

We first apply an initial estimate approach of relative
permittivity in each layer of the background media. In the
GPR observation model, the CSI method suffers from inac-
curacy owing to a considerably higher number of unknowns
than data samples. Thus, we introduce a reduction approach
for unknowns below, considering a multilayered medium
that assumes inversion of the terahertz band [37], Reduc-
ing the number of unknowns assumes that each layer has
a homogeneous medium with constant dielectric proper-
ties. First, the unknown set of vectors is defined as χ ≡

(χ1, . . . , χn, . . . , χNlayer), where χn is the contrast function of
the nth layer and Nlayer is the number of layers. Second, the
optimized combination vector χ̂ is determined as follows:

χ̂ = arg min
χ

Nlayer∑
n=1

F(χn, wn; �D,n) (8)

where wn denotes the contrast source value of the nth layer,
optimized in the CSI iteration with the initial set of χ ,
fixed in the iteration sequences. F(χn, wn; �D,n) expresses the
cost function for the integral area of the nth layer as �D,n .
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Fig. 3. Total electric field at the specific transmitter rT and the Green’s
functions optimized in the CSI scheme.

The original CSI should allocate a huge number of unknowns
to a full region of several layers as ROI but this approach dras-
tically decreases the number of unknowns to only n variables
denoted as χn in the optimization. The above methodology
and characteristics have been detailed in [37]. Furthermore,
using the estimate of χ , the CSI procedure optimizes the total
field in each ROI cell, defined as ÊT(ω; rT, r), which is then
used in the post-SAR scheme detailed in Section IV-B.

B. CSI-Enhanced SAR

This section describes the enhanced SAR algorithm applied
to unknown background heterogeneous media. By exploiting
the initial estimate of the CSI described in Section IV-A,
(i.e., the contrast function χ̂) and the total field in the ROI
as ÊT(ω; rT, r)), the Green’s functions in (1) are modified as

G̃B
T(ω; rT, r) ≡

ÊT(ω; rT, r)
ET

air(ω; rT, rT)
(9)

G̃B
R(ω; rR, r) ≡

ÊT(ω; rR, r)
ET

air(ω; rR, rR)
. (10)

Here, ET
air(ω; rT, rT) and ET

air(ω; rR, rR) denote the total fields
generated by the source located and observed at rT and
rR, respectively, assuming the background media as vacuum.
Fig. 3 shows the definition of each Green’s function pro-
vided by the total field optimized by CSI. ÊT(ω; rT, r) and
ÊT(ω; rR, r) are the total fields at r ∈ �D reconstructed
following the CSI method described in Section IV-A, where
χ(ω; r) is fixed at χ̂ . Because we used a combination of
transmitters and receivers, there must be a case where a trans-
mitter is located in the focused receiver. Hence, ÊT(ω; rR, r)
is available in this case. The Green’s functions in (9) and (10)
offer an accurate propagation model for the assumed heteroge-
neous background, because ÊT(ω; rT, r) and ÊT(ω; rR, r) are
optimized in the case with the multilayered medium without
including an object. Hence, the enhanced SAR image Ĩ (r) is
calculated as

Ĩ (r) =

∑
(rT,rR)∈�S

∫
∞

−∞

ẼS(ω; rT, rR)

× G̃B
R(ω; rR, r)G̃B∗

T (ω; rT, r)dω (11)

where ẼS(ω; rT, rR) denotes the scattered field defined
as ẼS(ω; rT, rR) ≡ ET(ω; rT, rR) − ẼTB(ω; rT, rR),

ẼTB(ω; rT, rR) denotes the total field assuming the case with
only a background multilayered medium and no object.

Notably, the CSI provides the above total field because CSI
outputs the total field in �D and the observation area �S.
Thus, once the CSI iteration process is completed assuming
the background multilayered media, following the method
described in Section IV-A, we can obtain the total field for
the background media, namely background clutter responses,
ẼTB(ω; rT, rR), as:

ẼTB(ω; rT, rR) ≡ E I(ω; rT, rR)

+ k2
B

∫
�D

G̃B∗

R (ω; rR, r)w̃(ω; rT, r)d r

(rR ∈ �S) (12)

where G̃B∗

R (ω; rR, r) is obtained in (10). w̃(ω; rT, r) is defined
as w̃(ω; rT, r) ≡ χ̂(ω, r)ÊT(ω; rT, r) where χ̂(ω, r) is
determined by the optimized contrast function of χ̂ in (8).
ÊT(ω; rT, r) denotes the optimized total field, also used in (9).

C. Procedure of Proposed Method

The procedure of the proposed method is summarized as
follows.
Step 1): The initial estimation of χ is obtained in (8) as χ̂ ≡

(χ1, . . . , χn, . . . , χNlayer).
Step 2): At a specific angular frequency ωi , ÊT(ωi ; rT, r) is

optimized by the CSI with fixed χ(ωi , r), derived
from χ̂ .

Step 3): The Green’s functions G̃B
T(ωi ; rT, r) and

G̃B
R(ωi ; rR, r) are calculated in (9) and (10),

respectively, using ÊT(ωi ; rT, r).
Step 4): ẼTB(ωi ; rT, rR) is calculated using (12), and the

scattered field is determined, assuming multilayered
background ẼS(ωi ; rT, rR).

Step 5): Steps 2), 3), and 4) are conducted at the number of
angular frequency set ω ≡ (ω1, . . . , ωNFR).

Step 6): CSI-enhanced SAR images are obtained as Ĩ (r)
in (11).

Fig. 4 shows the flowchart of the proposed method.

V. RESULTS: FDTD NUMERICAL TEST

A. Numerical Setting

In this section, the 2-D FDTD-based numerical tests are
investigated assuming the multilayered ground medium. Fig. 5
shows the two models assumed herein. in this article. Here,
the multilayered background medium is set in a vacuum,
and a set of transmitters and receivers is scanned along the
ground surface for 200 ≤ x ≤ 1800 mm with 100 mm
spacing, namely, monostatic observation model is assumed.
We assume the L-band radar and the center frequency and
bandwidth of the transmitted raised cosine modulated pulse
are 0.58 and 0.37 GHz, respectively. The theoretical range
and cross-range resolutions (depth = 40 cm and ϵB = 6) are
76 and 53 mm, respectively. The cell sizes for the FDTD and
the inversion calculation are set to 10 mm. Table I summarizes
the assumed sets of relative permittivity and conductivity for
each background layer and buried object. Note that, a number
of studies demonstrated that there is no significant frequency
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TABLE I
DIELECTRIC PARAMETER FOR EACH LAYER AND OBJECT

Fig. 4. Processing of the proposed method.

dependency of permittivity in this frequency band [39]. The
first, second, and third layers correspond to dry, humid, and
saturated clay, respectively. These dielectric values are adopted
from the literature [40] at the assumed frequency band. In addi-
tion, assuming an air cavity detection under the ground, the
buried object is as an air-filled object; each dielectric property
was retrieved from the literature [40]. Cases #1 involves a
single object in Fig. 5(a) buried at the center of the second
layer, and Case #2 involves two objects buried at the first and
third layers in Fig. 5(b).

B. Parameters and Conditions

The results of the SAR-based reconstruction for buried
objects are obtained as follows. In this test, three conditions of
the proposed method are studied to validate the applicability
of the CSI-based propagation model. In Conditions I and II,
the relative permittivities for each layer are given as true
values and are reconstructed using the method [37] in Con-
dition III. Condition I, the total fields ÊT(ω, r; rT) and the
scattered fields ẼS(ω; rT, rR) are obtained suing the FDTD

Fig. 5. Ground-truth profiles for relative permittivity of multilayered
background medium, including air cavities. (a) Case #1. (b) Case #2.

method; i.e., ideal inputs are available in the enhanced SAR
reconstruction. In Conditions II and III, the scattered fields
ẼS(ω; rT, rR) and the total fields ÊT(ω, r; rT) are estimated
using the CSI. Notably, Condition III is the most practical case
when the scattered fields ẼS(ω; rT, rR) and the total fields
ÊT(ω, r; rT) are determined by the CSI, where the dielectric
constant of each layer is estimated using the method [37]
described in Section IV-A. Table II summarizes the above
mentioned conditions.

C. Estimations of Dielectric Property in Each Layer

The initial estimation of the dielectric property for
each layer is performed using the method described in
Section IV-A, where CSI iteration is conducted 2000 times for
each combination of (ϵ1, ϵ2, ϵ3) and λ = 900 in (5) is selected
empirically. Fig. 6 shows the distribution of residuals for the
cost function, demonstrating that the optimized combination
reaches the minimum residual of the CSI cost function around
the combinations of (ϵ1, ϵ2, ϵ3). Table III shows the relative
permittivity for each layer. The relative permittivities for the
first and second layers are accurately provided, while that
for the third layer shows some errors. These are due to
the insignificant contrast along ϵ3 of the residual of cost
function log F (Fig. 6). This is because the conductivity of
the third layer is relatively higher than that of the other
layers, and the radiated electric field cannot penetrate deeply
into the third layer. Thus, the response from the bottom
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Fig. 6. Cross section profiles of the minimized residual of the cost function in (8) for each combination of relative permittivity. White and red dots denote the
true and estimated combination of permittivities, respectively. (a) Case #1 (ϵ1, ϵ2). (b) Case #1 (ϵ2, ϵ3). (c) Case #1 (ϵ1, ϵ3). (d) Case #2 (ϵ1, ϵ2). (e) Case #2
(ϵ2, ϵ3). (f) Case #2 (ϵ1, ϵ3).

TABLE II
DETAILS OF EACH CONDITION OF THE PROPOSED METHOD

Fig. 7. Reconstruction of the total field at the specific transmitter and the cell in the ROI in the frequency domain. Blue denotes the FDTD data. Red denotes
the CSI reconstructed data. (a) Real part. (b) Imaginary part.

TABLE III
RESULTS FOR RELATIVE PERMITTIVITY ESTIMATION

IN EACH CASE USING METHOD [37]

of the third layer would be considerably lower, causing a
lower contrast of log F , which reflects significantly on the
time delay value between each layer. The calculation time is

approximately 117 h for the initial permittivity estimation for
each layer, using Intel1 Xeon1 Gold 5218 CPU 2.30 GHz with
3.70 TB RAM.

D. Reconstructions of Green’s Function and Scattered Field

In the proposed method, the Green’s functions defined in (9)
and (10) are calculated from the total fields ÊT(ω; rT, r) and
ÊT(ω; rR, r), which are available from the above minimization
procedure using the CSI cost function. The reconstruction
results of these total fields are shown in Figs. 7 and 8. These
results are also represented in Case #1, where the total fields at

1Registered trademark.
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Fig. 8. Real and imaginary values of complex total fields ÊT(ω; rT, r) at each ROI position by the FDTD (reference) and CSI in Case 3. First line: real
part. Second line: imaginary part. (a) and (d) FDTD. (b) and (e) CSI. (c) and (f) Difference.

Fig. 9. Reconstruction of the scattered field ẼTB(ω; rT, rR) in (12) at the specific combination of the transmitter and receiver in the ROI, in the frequency
domain. Blue denotes the FDTD data. Red denotes the CSI reconstructed data. (a) Real part. (b) Imaginary part.

each ROI position are provided by the FDTD (reference value)
and CSI-based optimization in (5). Fig. 7 shows the frequency
responses at the specific combination of the transmitter and
receiver, and Fig. 8 illustrates the complex value profile of
the total fields, at the specific transmitter and frequency at
0.58 GHz. Figs. 7 and 8 demonstrate that the CSI-based total
field optimization can reconstruct the total field in all ROI
cells and frequency ranges, compared to the FDTD-based
reference value, where the difference between FDTD and CSI
is significantly smaller than that of maximum values. These
results indicate that Green’s function can be accurately derived
using the proposed CSI approach, assuming a heterogeneous
background.

In addition, Fig. 9 shows the results of the reconstruction
of the scattered fields ẼTB(ω; rT, rR) in (12), at the specific
combination of the transmitter and receiver in the frequency
domain. As shown in Fig. 9, the proposed scheme accurately
reconstructs the scattered field, that is, the signal including
only the buried object. This is because the scattered fields
ẼTB(ω; rT, rR) in (12) is determined by only total fields
ÊT(ω; rT, r), which are accurately provided by the CSI as
denoted in Fig. 7. This means that a sufficiently accurate
estimate of the ES(ω; rT, rR) could be available without using
the FDTD forward solvers, which is a distinct advantage of
this method over other approaches. Thus, the proposed method

can guarantee the subtraction process between the cases with
and without objects.

E. Reconstructions of SAR Based Images

This section presents the image reconstruction results for
each method or condition. Regarding Case #1, Fig. 10 shows
the reconstruction profiles for the original SAR and the CSI-
enhanced SAR (the proposed method) in each target case.
In the original SAR scheme, it assumes that three layers have
a uniform permittivity, that is, a homogeneous assumption
is applied. Here, to assess the dependency on the selected
relative permittivities, the three different relative permittivities
are given as 3, 6, and 9, which are transformed to propagation
velocity utilized in (2) and (3) as cB = cair/

√
ϵB. In addition,

to distinguish the second advantage of the proposed method,
that is, the clutter elimination scheme employing the CSI
output, the two conditions for the original SAR are introduced.
The first condition is that the scattered field designated as
ẼTB(ω; rT, rR), is provided by the FDTD, implying that
background clutter from each layer is completely eliminated,
which is denoted as “w/ complete clutter suppression” in
Fig. 10(a)–(c). Note that, such a condition is hardly available
in real-world situation. Further, i.e., a more practical scenario
entails suppressing only the reflection from the first layer,
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Fig. 10. Reconstruction DAS images in the Case #1. White rectangular line denotes the actual boundary of buried object. Color denotes the magnitude of
the image. (a) Conventional SAR (ϵB = 3) w/ complete clutter suppression. (b) Conventional SAR (ϵB = 6) w/ complete clutter suppression. (c) Conventional
SAR (ϵB = 9) w/ complete clutter suppression. (d) Conventional SAR (ϵB = 3) w/ only first layer surface clutter suppression. (e) Conventional SAR (ϵB = 6)
w/ only first layer surface clutter suppression. (f) Conventional SAR (ϵB = 9) w/ only first layer surface clutter suppression. (g) Proposed (Condition I).
(h) Proposed (Condition II). (i) Proposed (Condition III).

which is indicated as “w/ only the first layer surface complete
clutter suppression” as shown in Fig. 10(d)–(f). Because the
clutter response from the first layer is mostly dominating
and readily reduced by applying average signal subtraction
or window-based filtering for shallow areas, this situation is
frequently used in many GPR applications [41], [42]. Notably,
it is extremely difficult to eliminate the clutter signals from
the second or deeper layers because the object may be located
at the same depth as these deeper layers or may possess a
shape similar to that of a planar layer. Focusing on the original
SAR with complete clutter suppression, even if the background
clutter is perfectly suppressed, it cannot appropriately locate
the buried object position, especially in the case of ϵB = 6
and 9 because the original SAR considers the homogeneous
background medium. The cases in ϵB = 3 provide relatively
accurate profiles because they match the relative permittivity
of the first layer. However, the above parameter could not
be determined without prior knowledge of the target depth
or the permittivity of each layer. The first inherent problem
with the original SAR is that its accuracy depends highly on
the selected dielectric contrasts ϵB. In addition, in the second
condition, that is, w/ only first layer surface complete clutter
suppression, the original SAR severely suffers from unnec-
essary responses, which are mainly caused by the reflection
responses between first and second layers. Therefore, an accu-
rate clutter suppression scheme for deeper layers is required.
However, to the best of our knowledge, the implementation
of such schemes has not been achieved in any existing
studies, posing a significant obstacle to the standard SAR
approach.

On the contrary, the reconstruction image by the proposed
method accurately focuses on the location of the actual buried
object in any condition. Condition I uses the FDTD based
referential data using the Green’s function and the total fields
of background medium as ẼTB(ω; rT, rR). Subsequently, the
accurate propagation for multilayer background generates a
reliable image with clutter free signals. Notably, while Con-
ditions II and III do not employ the above knowledge, but
use the CSI optimized outputs, the proposed schemes retain
the accurate target reconstruction image (that is almost the
same as that assumed in Condition I) by eliminating the
false images occurring in the original SAR image. This is
because the Green’s function and ẼTB(ω; rT, rR) could be
accurately reconstructed in the CSI approach, as demonstrated
in Section V-D. In addition, the second flaw in the original
SAR approach, an insufficient clutter suppression, is efficiently
addressed by referring to Conditions II or III in the proposed
method, which uses the CSI outputs for clutter signal gen-
eration. Furthermore, in Condition III, the dielectric constant
of the third layer is not correctly given, the reconstruction
image still offers accurate target position, because the target
is located at second layer, and the accuracy for the propagation
model into the third layer is not significantly affected. Note
that, the focused image even in using accurate Green’s function
in the proposed method does not place on the center of the
buried target but on the upper boundary of the object. This
is due to the reflection signal being from the object’s upper
boundary, which is caused by the dielectric difference between
the background medium and the object (air). that is an essential
and inherent characteristic of SAR imaging.
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Fig. 11. Reconstruction DAS images in the Case #2. White rectangular line denotes the actual boundary of buried object. Color denotes the magnitude of
the image. (a) Conventional SAR (ϵB = 3) w/ complete clutter suppression. (b) Conventional SAR (ϵB = 6) w/ complete clutter suppression. (c) Conventional
SAR (ϵB = 9) w/ complete clutter suppression. (d) Conventional SAR (ϵB = 3)w/ only first layer surface clutter suppression. (e) Conventional SAR (ϵB = 6)
w/ only first layer surface clutter suppression. (f) Conventional SAR (ϵB = 9) w/ only first layer surface clutter suppression. (g) Proposed (Condition I).
(h) Proposed (Condition II). (i) Proposed (Condition III).

Second, focusing on the Case #2, the results for each
method are shown in Fig. 11 and are similar to those in
Case #1. The original SAR suffers from image distortions
owing to inappropriate selection of the relative permittivity
of background ϵB, even in the case with complete clutter sup-
pression. In addition, the insufficient clutter reduction results
in non-negligible unwanted responses as in Fig. 11(d)–(f).
On the contrary, the proposed method retains its accuracy
in each condition. However, in both cases, the object buried
in the third layer could not be shown in each method or
case. This is because the object is buried in the layer with
high conductivity and generates a weaker echo than the object
buried in the first layer. This is a limitation of both methods,
and should be resolved using an attenuation compensation
approach [43], [44].

Regarding the quantitative analysis of reconstruction
images, we introduce three criteria for the obtained images,
signal-to-mean ratio (SMR), signal-to-clutter ratio (SCR), and
the location errors of the target (Errloc). The SCR is the power
ratio from the first maximum peak to the second maximum
peak of an image and assesses the clutter suppression ratio.
The SMR is the power ratio from the first maximum peak
to the average strength of the ROI. These two criteria have
been widely accepted in evaluating SAR-based images [45],
[46]. As another metric focusing on the peak position of each
image, the following error is defined:

Errloc = ∥ ptrue − p̂CI∥ (13)

where ptrue denotes the true position of the object, defined as
the center of the upper surface of the object. p̂CI expresses

the position with a maximum response of each image.
Tables IV and V show the SMR, SCR, and Errloc in each
method for Case #1 and #2, respectively. These tables demon-
strate that compared to the values obtained by conventional
SAR images, the proposed approach retains a higher SMR or
SCR value and a lower Errloc value in both cases.

F. Case With Additive Noise

We next investigate the sensitivity to additive noise for each
method as follows. The white Gaussian noises are added to
each scattered signal in the time domain. The signal-to-noise
ratio (SNR) is defined as the ratio of maximum signal power
to noise variance, where the signal represents the reflection
responses from multilayer medium, which is considerably
stronger than that from the buried object. We assume the
representative case as 30 dB SNR. Fig. 12 shows the exam-
ple of reflection responses without or with subtraction for
three-layered background responses in this case. Note that,
when we consider that the signal power is only from the
buried object as shown in Fig. 12(b), its SNR is from 0 to
10 dB, which would be available in a real scenario demon-
strated in [47] and [8]. Case #1 is assumed, and Fig. 13
shows the distribution of CSI cost functions’ residual for
each permittivity combination in (5), and it also demonstrated
that the optimal solution reaches to the actual combination
even in this noisy scenario, indicating the noise-robustness
for permittivity estimation using (5). In addition, Fig. 14
depicts the reconstruction outcomes using each approach under
various settings. Because the conventional or proposed SAR
technique can minimize noise components due to coherent
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TABLE IV
QUANTITATIVE IMAGE EVALUATIONS IN EACH METHOD AT CASE #1

TABLE V
QUANTITATIVE IMAGE EVALUATIONS IN EACH METHOD AT CASE #2

TABLE VI
QUANTITATIVE IMAGE EVALUATIONS IN EACH METHOD AT CASE #1 AT SNR = 30 dB

Fig. 12. Examples of reflection responses without and with subtraction of
three-layer background medium at the SNR of 30 dB case. (a) W/o subtraction.
(b) W/ subtraction.

integration effects, these figures illustrate that our proposed
method greatly preserves reconstruction accuracy even in such
low SNR cases. Table VI also shows the quantitative image
evaluations in this case, and this table also demonstrates that
our proposed method retains the same SCR, SMR, or error
level assuming the noise-free case.

G. Case With Heterogeneous Layer Model

Furthermore, to assess the applicability for the practical
scenario, the heterogeneous layer model is investigated as
follows. While the previous model assumes that each layer
has a fully homogeneous medium, there should be variations

in permittivity and conductivity for each layer. Fig. 15 shows
the heterogeneous profiles for permittivity and conductivity
using the above model. Here to generate a heterogeneous layer
model, a certain level of variations for permittivity and conduc-
tivity are given using the Gaussian distribution. In particular,
for permittivity and conductivity, we add the random fluctua-
tions generated by a normal distribution with a fixed standard
deviation to each layer parameter as (σϵ,1, σϵ,2, σϵ,3) =

(0.6, 1.2, 2.0) and (σσ,1, σσ,2, σσ,3) = (0.002, 0.02, 0.2 S/m),
respectively, where σϵ,i and (σσ,i denote the standard devi-
ations at the i th layer for permittivity and conductivity,
respectively, that are 20% of the assumed permittivity and con-
ductivity at each layer. And then, these profiles are smoothed
using the Gaussian filter with the correlation length σGSS =

50 mm. Table VII shows the permittivity estimation results for
each layer in this situation, demonstrating that the approach
[37] would still offer a valid estimate for the #1 and #2 layers,
which are the same as Table III’s homogeneous case. Fig. 16
shows the reconstruction results in this case for each method.
As demonstrated by these data, both the traditional and pro-
posed approaches have non-negligible unnecessary responses
produced by the heterogeneity of each layer model. Since
the proposed method calculates Green’s function assuming
a homogeneous multilayer model, it could not completely
suppress the clutter responses due to heterogeneity in each
layer in (12). Table VIII also shows the quantitative evaluations
in this case, and it demonstrates that our proposed method
improves the SCR ratio marginally, which would be due to a
more accurate Green’s function. Nonetheless, more research is
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Fig. 13. Cross section profiles of the minimized residual of the cost function in (8) for each combination of relative permittivity at SNR of 30 dB. White
and red dots denote the true and estimated combination of permittivities, respectively. (a) Case #1 (ϵ1, ϵ2). (b) Case #1 (ϵ2, ϵ3). (c) Case #1 (ϵ1, ϵ3).

Fig. 14. Reconstruction DAS images in the Case #1 at the case for SNR = 30 dB. White rectangular line denotes the actual boundary of buried object.
Color denotes the magnitude of the image. (a) Conventional SAR (ϵB = 3) w/ complete clutter suppression. (b) Conventional SAR (ϵB = 6) w/ complete
clutter suppression. (c) Conventional SAR (ϵB = 9) w/ complete clutter suppression. (d) Proposed (Condition I). (e) Proposed (Condition II). (f) Proposed
(Condition III).

TABLE VII
RESULTS FOR RELATIVE PERMITTIVITY ESTIMATION IN
EACH CASE USING METHOD [37] AT HETEROGENEOUS

LAYER MODEL SHOWN IN FIG. 15

needed to solve the aforementioned heterogeneity model, such
as reconstructing a dielectric profile with more unknowns to
offer an accurate background dielectric profile in the proposed
method.

H. Computational Complexity
The computational complexity for each approach is inves-

tigated as follows. Table IX summarizes the computational
complexity and actual run time, using the computational
resources using Intel Xeon Gold 5218 CPU 2.30 GHz and
3.70 TB RAM. Here, as described in Section V-A, NFR is the
number of frequency samples. Nlayer is the number of layers,
and Nscan is the number of scanning points. NSMP denotes
the number of sampling points of ϵi . NROI is the number
of cells in the ROI, and Nite is the number of iterations
required in the CSI. Initially, the total computational time
for the relative permittivity estimation by the method [37] is

approximately 100 h, where NFR = 10, Nscan = 17, Nlayer = 3,
NSMP = 3, NROI = 9600, and Nite = 2000 are set. This process
requires large computational complexity, however, if we obtain
prior knowledge or a rough estimation of the permittivity of
each layer, the “Index 2” process could be omitted. There
are several promising approaches for obtaining the relative
permittivity for each layer [48], [49]. While the conventional
DAS process requires limited computational time (“Index 1”),
compared with those required in the proposed method as
Index 3, 4, and 5. the complexities of Index 4 and 5 are
the same as that of Index 1, namely, the homogeneous-based
SAR approach. The Index 3 process depends highly on the
iteration number of the CSI (Nite), where Nite = 1000 is set.
However, this value could be reduced using a more appropriate
initial estimate from the pre-process in Index 2. In addition,
there are some studies assuming a multilayer medium [35],
which is predicted to be of lower complexity using geomet-
rical optics (GO) approximation based on Green’s function.
However, those approaches basically do not include a clutter
suppression scheme and do or not account for diffraction or
multiple scattering effects between numerous layers, resulting
in reconstruction inaccuracy due to unwanted responses of the
aforementioned clutters. Nonetheless, it is our important future
work to reduce an actual run time, by eliminating redundant
processing or introducing an under-sampling scheme such as
for total-field optimization in the CSI.
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Fig. 15. Ground truth profiles for relative permittivity of heterogeneous multilayered background medium, including air cavities. (a) Relative permittivity.
(b) Conductivity.

Fig. 16. Reconstruction DAS images at the heterogeneous layer model shown in Fig. 15. White rectangular line denotes the actual boundary of buried object.
Color denotes the magnitude of the image. (a) Conventional SAR (ϵB = 3) w/ complete clutter suppression. (b) Conventional SAR (ϵB = 6) w/ complete
clutter suppression. (c) Conventional SAR (ϵB = 9) w/ complete clutter suppression. (d) Proposed (Condition I). (e) Proposed (Condition II). (f) Proposed
(Condition III).

TABLE VIII
QUANTITATIVE IMAGE EVALUATIONS IN EACH METHOD FOR HETEROGENEOUS MODEL AT CASE #1

TABLE IX
COMPUTATIONAL COMPLEXITY AND ACTUAL RUN TIME IN EACH PROCESS

I. Limitations and Further Discussions

This section clarifies the limitations of the proposed method,
assuming the realistic scenario. To begin, the proposed method
requires prior knowledge of the number of layers, whereas
the standard SAR methodology does not, and there may
be circumstances where the aforesaid information is missing
or provided incorrectly. While many studies stated that the
number of layers could be obtained by evaluating the down

range profile of B-scan data [50], it should be noted that
the selection of layer number in the proposed method would
affect the final reconstruction outcomes. To demonstrate the
above point, we introduced the validations in the scenario
that the number of layers is wrongly given. First, we assume
the Case #1 model, which has three layers as illustrated in
Fig. 5(a), but we give an inappropriate assumption as two
layers model as shown in Fig. 17 in the proposed method,
where each layer has a thickness of 300 mm and dielectric
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Fig. 17. Assumed profiles of relative permittivity and conductivity in two
layers model for Case #1, in the proposed method. (a) Relative permittivity.
(b) Conductivity.

Fig. 18. Reconstruction DAS images in the Case #1 by the proposed method,
using the inappropriate assumption of the number of layers as two layer model.
White rectangular line denotes the actual boundary of buried object. Color
denotes the magnitude of the image. (a) Proposed (Condition I).

properties of (ϵ, σ ) = (4.5, 0.05 S/m) for the first layer and
(ϵ, σ ) = (8.0, 0.5 S/m) for the second layer, which are inter-
mediate values for the three layers model, Case #1, as shown in
Fig. 5(a). In this situation, the above false assumption likely
to have an effect on the reconstruction accuracy of Green’s
functions or background clutter production in the proposed
method given in Section IV-B. Fig. 18 depicts the reconstruc-
tion results obtained by the proposed method with Condition I,
demonstrating that there are numerous unnecessary responses
in the upper layer area, owing to insufficient clutter reduction
in (12), because the total field ET(ω; rT, r) in the ROI is
generated by the two-layer models. The Green’s functions used
in (11) is also miscalculated by the above total fields in (9)
and (10), which focuses the scattered signals on the upper
side of the actual target boundary. Then, the prior knowledge
of the number of layers and thickness are critical, and that is
the limitation of the proposed method. However, assuming a
general GPR scenario, some studies could provide the number
of layers from B-scan data [51], or using other measurement
techniques such as ultrasound. Thus, the combination used for
the above approaches should be included as the pre-processing
scheme in a realistic situation.

VI. CONCLUSION

Herein, we presented an inverse scattering-enhanced radar
imaging technique for ground-penetrating or general subsur-
face imaging scenarios using low-frequency band microwave.
The proposed technique is mainly divided into the two steps.
In the first step, the initial estimate of the background multiple
layers is performed by assessing the minimum residual of

the CSI cost function based on a previous study [37], which
can massively reduce the computational cost. In the second
step, the propagation model in the assumed heterogeneous
multilayer background is accurately estimated by the total
fields of ROI cells, optimized by the CSI scheme in the first
step. Notably, the proposed method newly focusing on the
CSI optimization approach, can provide an accurate initial
estimate of relative permittivity and numerous total fields
optimized on each ROI cell, facilitating the calculation of
an appropriate Green’s function. In addition, the total fields
from background media can be provided by the CSI outputs,
namely, the Green’s function and the contrast profile of the
background, enabling us to eliminate the clutter components
such as multiple reflections between layers. By exploiting the
above feature, the accuracy of radar images, such as SAR,
can be remarkably upgraded compared to the traditional SAR
approach using average permittivity for the propagation model
in a multilayered model.

Assuming different subsurface scenarios using the L-band
signal, the numerical 2-D FDTD test demonstrates that our
proposed method considerably enhances the reconstruction
accuracy, especially for the multilayered background with high
contrasts. Furthermore, while the traditional DAS approach
suffers from critical false images due to the reflection among
layers, the proposed method completely suppresses these clut-
ter responses using Green’s function, which can compensate
for the single or multiple reflection effects among the back-
ground layers. Notably, the proposed method can be applied to
low and high contrast multilayer models because the Green’s
function or clutter suppression can be generated using the CSI
scheme. In particular, when assuming higher dielectric contrast
layers, the convergence speed of CSI may decrease owing to
high nonlinearity. However, the aforementioned concern can
be alleviated by providing an appropriate initial dielectric con-
trast during the process described in Section IV-A. In addition,
in lower contrast cases, such as those close to homogeneous
backgrounds, the proposed method is not necessarily required
to enhance the reconstruction accuracy. However, an initial
estimate of the average permittivity of the layers is required
for SAR processing. While no experimental validations are
offered in this study, our proposed methodology appears to be
a potential solution for conventional GRP imaging problems,
particularly in multilayered subsurface scenarios. Furthermore,
by including an appropriate inverse scattering analysis, such
as [29], the proposed approach would provide a significant
estimate for the post-quantitative reconstruction of dielectric
property for buried objects.
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