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Abstract—This paper introduces the incorporation approach
with synthetic aperture radar (SAR) and contrast source inver-
sion (CSI) based non-linear inverse scattering (NIS) approach
for quantitative permittivity imaging for buried object under
multi-layered heterogeneous ground media. It is challenging
issue to retrieve a complex permittivity from ground penetrating
radar (GPR) data, since the NIS problem considerably suffers
from inaccuracy due to severe ill-posed condition. To overcome
this limitation, this paper introduces the SAR image based
region of interest (ROI) limitation in the CSI optimization
scheme, where the number of unknowns are massively reduced.
Furthermore, the SAR image is also upgraded by the pre-CSI
optimization, where the Green’s function and background clut-
ter for heterogeneous background (e.g., multi-layered medium)
are accurately generated. The FDTD based numerical tests,
assuming GPR observation model, show that our proposed
scheme effectively reconstructs a dielectric property of buried
object, even in severe condition.

Key words—Microwave subsurface imaging, Ground pene-
trating radar (GPR), Non-linear inverse scattering, Contrast
Source Inversion method (CSI), Synthetic aperture radar (SAR),
Complex permittivity

I. INTRODUCTION

There is a growing demand for effective monitoring
tools for underground and subsurface investigations. Ground-
penetrating radar (GPR) is used for soil structure analysis and
detecting anomalies such as air voids and water leakage in
sewage systems. This is important as these anomalies can
cause devastating disasters, especially during earthquakes or
excavation for tunnels or roads [1]. Additionally, monitoring
transportation infrastructure, such as highways, bridges, or
tunnels, is critical to prevent catastrophic collapse due to
aging. Microwave GPR is a promising option for reliable
investigation, providing deep penetration depth of meters and
high range and azimuth resolution through ultra-wideband
signal and synthetic aperture processing.

Synthetic aperture radar (SAR) processing is an efficient
imaging scheme assuming GPR observations [2], [3]. It can
provide a reflectivity coefficient for a buried object with
high azimuth resolution by integrating the reflection signal
coherently under a phase compensation of the propagation

This research was supported by JST FOREST Program, Grant Number
JPMJFR2025, Japan.

Y. Yamauchi and S. Kidera are with the Graduate School
of Informatics and Engineering, The University of Electro-
Communications, Tokyo, 182-8585, Japan. E-mail: kidera@uec.ac.jp
HTML: www.ems.cei.uec.ac.jp/index-e.html

delay [4]–[6]. However, SAR can only offer a qualitative
profile, making it difficult to discriminate the physical, chem-
ical, or electrical characteristics of a buried material such
as air, water, brine, or other compounds. Additionally, in
cases where the background soil medium has a heterogeneous
profile, such as a multi-layered structure, SAR images may
suffer from inaccuracy due to an inappropriate propagation
model or multiple scattering among stratified layers. More
critical point is that the image accuracy largely depends
on the selected permittivity value, which determines the
propagation speed and is difficult to determine as it varies
in a heterogeneous background model. Some studies have
attempted to address this difficulty [6], [7], but they still could
not resolve unnecessary responses due to multiple scattering
effects or other clutter responses.

To address this issue, we previously proposed the non-
linear inverse scattering (NIS) enhanced SAR approach [8],
[9], where the contrast source inversion (CSI) NIS scheme
is introduced to achieve an accurate propagation function,
such as Green’s function, and suppress clutter response by
exploiting the optimal outputs of the CSI. While this scheme
successfully enhances the reconstruction accuracy of the
SAR image in the stratified media, it still has an substantial
issue that the dielectric properties of an object could not be
retrieved.

To solve this problem, this paper introduces the NIS
approach in the GPR model to retrieve a complex permittivity
value by exploiting the SAR image obtained by the method.
There have been various studies on quantitative reconstruc-
tion using the NIS method. The diffraction tomography-based
reconstruction, which is a linear Born approximation, has
been introduced in several literatures [10]–[12]. However, it
suffers from inaccuracy for high-contrast objects like water
or air voids due to non-linearity. On the other hand, NIS-
based multi-resolution [13]–[15] or Bayesian compression
techniques [16], [17] have been implemented successfully
by reducing the number of unknowns or introducing a
sparse regularization scheme. However, the above approaches
requires an iterative use of forward solver, such as FDTD
method, and needs significantly expensive computational
cost. Nonetheless, these approaches require iterative use of
a forward solver like the FDTD method, which is computa-
tionally expensive. In contrast, the CSI [18]–[20] has been
widely used in many applications, including the GPR model
[21]–[25], due to its cost effective inversion scheme that
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optimizes the total field in the region of interest (ROI) without
recursive calculation of the forward problem. Building on the
CSI feature, we have proposed the CSI-based permittivity
extraction for multi-layered media [26], where the CSI cost
function evaluates the possible combination of relative per-
mittivity. Another notable CSI feature is that it provides both
a contrast function (dielectric profile as primary variables)
and a total field in the ROI (secondary variables), enabling
the determination of the Green’s function for the assumed
heterogeneous background media. However, the CSI suffers
from the ill-posed feature, which is more severe in the GPR
model due to the limited illumination angle. Some literature
has introduced radar-image-based ROI restriction [27]–[32],
where the ROI is focused on the area where the target
exists. Nevertheless, the accuracy of the ROI is essential to
determine the actual target area. Therefore, we introduced the
CSI-enhanced SAR image by the method [8], [9] to enhance
the reconstruction accuracy of the CSI reconstruction.

Notably, the CSI necessitates not only the Green’s function
for the interaction between the sensor and the ROI, but also
for all the potential pairings of two different locations within
the ROI. These could not be supplied by the CSI updat-
ing scheme. To maintain accuracy even in a heterogeneous
background, we introduce an approximated Green’s function
model that assumes a homogeneous profile with an average
dielectric property.

The main contributions of this study, namely the bidi-
rectional processing between radar and tomography, are as
follows:

1) Tomography → Radar: We use the CSI optimization
variables, regarding the total field, to generate accurate
Green’s functions for heterogeneous media. We also
use them to reconstruct unnecessary clutter response
caused by reflection from background heterogeneity.

2) Radar → Tomography: We introduce the CSI-enhanced
SAR for prior ROI estimation in post-CSI-based per-
mittivity reconstruction. This significantly reduces the
number of unknowns.

3) The Green’s function defined in the data equation is
used in the ROI limitation scheme, to avoid using
the forward solver. The Green’s function in the state
equation is approximated to the analytical Green’s
function with homogeneous assumption.

Our proposed scheme shows effective ROI estimation in
multilayered background media and attains a more accurate
dielectric profile by post-CSI reconstruction in both permit-
tivity and conductivity, even in severe ill-posed conditions.
We demonstrate these results through a two-dimensional
FDTD-based numerical test, assuming a stratified soil struc-
ture with a C-band GPR model.

II. METHOD

A. Observation Model

The observation model, shown in Figure 1, assumes a
multi-layered ground media including a buried object. The
locations of the transmitter and receiver are defined as rT

Fig. 1: Observation model, assuming multi-layered ground
media, including buried object.

and rR, respectively, and the observation area, including the
scanning line, is defined as the domain ΩS. The background
medium forms a multi-layered structure, with each layer hav-
ing a consistent dielectric property. ET(ω; rT, rR) denotes
the total electric field measured at the receiver rR with the
angular frequency ω, when the incident field is illuminated
by the transmitter at rT. We defined the scattered electric
field as: ES(ω; rT, rR) ≡ ET(ω; rT, rR) − EI(ω; rT, rR),
where EI(ω; rT, rR) denotes the incident electric field. The
ROI is defined as ΩD, which depends on the definition of the
background media.

B. Contrast Source Inversion (CSI)

For GPR applications, radar imaging techniques such as
SAR or range migration schemes have been widely used to
provide the location or shape of buried objects. However,
these techniques face a critical problem in that they cannot
retrieve complex permittivity values as a quantitative metric.
This limitation makes it difficult to recognize the materials
of buried objects, such as air voids, or water-filled objects.
Additionally, in the case of multiple background layer media,
the reconstruction accuracy of the radar image depends
heavily on the selected propagation model, especially for
the relative permittivity of the background media, which is
usually assumed to be homogeneous.

To address these issues, we introduce a CSI-based complex
permittivity retrieval approach for objects under multi-layered
ground media. CSI is one of the most promising inverse
scattering methods that can reconstruct a dielectric profile
without the need for iterative calculations by a forward solver
[18]. The methodology is briefly described as follows: first,
the scattered electric field ES(ω; rT, rR) can be expressed
as the following domain integral equation (DIE):

ES(ω; rT, rR) = k2B

∫
ΩD

GB(ω; r, rR)w(ω; rT, r)dr, (1)

where kB and GB(ω; r, rR) denote the wave number and
Green’s function of the assumed background media, respec-
tively. χ(ω; r) ≡ (ϵ(r)− ϵB(r))/ϵB(r) denotes the contrast
function, where ϵ(r) and ϵB(r) are complex permittivities
at r with and without an object, respectively. w(ω; rT, r) ≡
χ(ω; r)ET(ω; rT, r) is called the contrast source. It should
be noted that Eq. (1) is expected to hold true in the domains
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Fig. 2: Illustration for Green’s functions in Eqs. (5) and (6)
for CSI enhanced CI processing.

ΩS and ΩD, which are referred to as the data and state
equations, respectively.

The CSI method introduces a cost function that takes into
account two physical constraints, Eq. (1) in ΩS and ΩD. The
cost function is defined as:

F (χ,w) ≡
∑

rT
∥ES(ω; rT, rR)− GS[w]∥2ΩS∑
rT

∥ES(ω; rT, rR)∥2ΩS

+λ

∑
rT

∥χ(ω; r)EI(ω; rT, r
′)− w(ω; rT, r) + χ(ω; r)GD[w]∥2ΩD∑

rT
∥χ(ω; r)EI(ω; rT, r′)∥2ΩD

.

(2)

Here λ is the regularization coefficient, and the operators GS

and GD are defined as:

GS[w] = k2B

∫
ΩD

GB(ω; rR, r)w(ω; rT, r)dr, (rR ∈ ΩS), (3)

GD[w] = k2B

∫
ΩD

GB(ω; r′, r)w(ω; rT, r)dr, (r
′ ∈ ΩD), (4)

where ∥ · ∥2ΩS
and ∥ · ∥2ΩD

denote the l2 norms calculated
in ΩS and ΩD, respectively. The three variables, w(rT, r),
ET(ω; rT, r), and χ(ω; r) with r ∈ ΩD, are sequentially
updated to minimize the cost function Eq. (2). Note that the
Green’s function denoted as GB(ω; rR, r) or GB(ω; r′, r)
represents the generic versions of the Green’s functions which
do not indicate a specific background. The CSI has a distinct
computational advantage in that it does not require iterative
calculations of the forward solver, such as FDTD, since the
total field ET(ω; rT, r) in the ROI is sequentially updated
in the optimization sequence.

However, in a general GPR model, the CSI or other inverse
scattering approaches suffer from an inherent problem: an
ill-posed condition. This is because the illumination angle
from the source is severely limited in the GPR model, and
the number of observation data is much less than that of
the unknowns. To address this issue, the radar prior-based
CSI has been developed in [27]. This method drastically
reduces the number of unknowns by limiting the ROI using
a radar image. Nevertheless, the reconstruction accuracy
of the complex permittivity depends largely on the given
radar image, which can suffer from inaccuracy in multiple
background media because the major radar approach assumes
homogeneous single-layered media.

C. CSI Enhanced CI

Based on the discussions mentioned earlier, it is clear that
we require an accurate radar imaging scheme for multiple-
layered models. To achieve this accuracy, we need to estimate
the Green’s function from the transmitter to the imaging
point (all points included in ROI) and to the receiver in
a heterogeneous background. However, these Green’s func-
tions are not typically expressed in an analytical form and
needed to be calculated using forward solvers such as FDTD.
These solvers, however, necessitate significant computational
resources.

In order to address these issues, our previous study [8]
proposed a CSI-enhanced radar imaging scheme that is
highly compatible with post-CSI processing. Here, we briefly
describe the methodology of this method. One of the key
features of the CSI is that it can optimize not only the
estimated contrast function χ̂ but the total field in the ROI as
ÊT(ω; rT, r), as the final optimization outputs. Given a con-
trast function χbg of the multi-layer background (excluding
the buried object), we only updated the total field, denoted
as ÊT(ω; rT, r) with a fixed χbg. In this case, the Green’s
functions in Eqs. (3) and (4) are defined as those in free
space.

Given that the Green’s functions for stratified background
media needed for the post-CI process are seldom provided in
an analytical form, they were determined using the following
equations as described in [8], [9], [33]:

G̃B
T(ω; rT, r) ≡

ÊT(ω; rT, r)

ET
air(ω; rT, rT)

, (5)

G̃B
R(ω; rR, r) ≡

ÊT(ω; rR, r)

ET
air(ω; rR, rR)

, (6)

where ET
air(ω; rT, rT) and ET

air(ω; rR, rR) are the total
fields from the source located at rT and observed at rR,
respectively, assuming the background media is vacuum.
ÊT(ω; rT, r) and ÊT(ω; rR, r) denote the total fields at
r ∈ ΩD that are optimized by the pre-CSI process. Figure
2 provides a physical representation of the Green’s func-
tions presented in Eq. (5) and (6). Under the reciprocal
theory and mono-static configuration, both ÊT(ω; rT, r) and
ÊT(ω; rR, r) are available. Note that this method provides an
accurate propagation model in the heterogeneous background
as the Green’s functions in Eqs. (5) and (6) are determined by
exploiting the optimized output of the CSI, without requiring
any calculation of the forward solver.

Finally, the radar image Ĩ(r) using the following equation:

Ĩ(r) =
∑

(rT,rR)∈ΩS

∫ ∞

−∞
ẼS(ω; rT, rR)

×G̃B
R(ω; rR, r)G̃

B∗
T (ω; rT, r)dω, (7)

where ẼS(ω; rT, rR) ≡ ET(ω; rT, rR)−ẼTB(ω; rT, rR), is
defined where ẼTB(ω; rT, rR) is the total field in the case of
a background multi-layered medium without a buried object.

Subsequently, to provide a suitable ẼS(ω; rT, rR), the to-
tal fields sourced solely from the stratified background media
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Fig. 3: Radar image based ROI limitation scheme in the
proposed method.

are generated. This was done to reconstruct the CI image
solely for the buried object as indicated in Eq. (7)). We were
particularly interested in the CSI characteristic that supplies
the total field in the ROI. This allowed us to generate the
total fields from the background clutter responses (scattered
responses excluding the buried object) at the observation area
ΩS as : ẼTB(ω; rT, rR):

ẼTB(ω; rT, rR) ≡ EI(ω; rT, rR)

+k2B

∫
ΩD

GB
air(ω; rR, r)w̃(ω; rT, r)dr,

(rR ∈ ΩS), (8)

In this scenario, GB
air(ω; rR, r) is the Green’s function in

free space, and w̃(ω; rT, r) ≡ χ̂(ω, r)ÊT(ω; rT, r) is de-
fined. Herein, χ̂(ω, r) represents the contrast function of the
assumed stratified background. This process aligns with the
”tomography → radar” processing. By calculating Eq. (8),
we could produce a scattered response ẼS(ω; rT, rR) that
excludes the background responses from the stratified media.

D. Radar Based ROI limitation for CSI

To achieve accurate reconstruction of the complex per-
mittivity of buried objects, this paper introduces a radar
image-based ROI limitation for post-CSI reconstruction. In
this method, the CSI-enhanced radar image, Ĩ(r), is used to
determine the ROI, which includes the object as Ωobj

D :

Ωobj
D = {r | |Ĩ(r)| ≥ αmax

r
|Ĩ(r)|} (9)

where α is a constant threshold with 0 ≤ α ≤ 1. Figure 3
shows the illustration of the radar image based ROI limitation
scheme.

To introduce the ROI limitation scheme for the post-
CSI process, we need to define the Green’s function for
the multilayered background media. Considering the Green’s
function of the data equation in Eq. (3) as GB(ω; rR, r), it
can be obtained by the pre-CSI outputs as:

G̃B
R(ω; rR, r) ≡

ÊT(ω; rR, r)

ET
air(ω; rR, rR)

(10)

This approach is similar to Eqs. (5) and (6). However, in the
state equation in Eq. (4), the Green’s function GB(ω; r′, r)
is not provided by the CSI optimization process, as it neces-
sitates defining for all possible cell combinations within the

Fig. 4: Green’s function in the ROI.

assumed ROI. To address this issue, we assume that the back-
ground medium in the limited ROI possesses homogeneous
properties, such as the average profile of stratified media. In
this context, we introduce the following Green’s function for
the state equation (Eq. (6)):

G̃B (ω; r′, r) = − i

4
H

(2)
0 (kB|r − r′|), (r, r′ ∈ ΩD) (11)

where kB represents the wavenumber of the background
medium, typically determined by the average dielectric prop-
erties of the stratified media within the limited ROI. H

(2)
0

expresses the Hankel function of the second kind and zero-
th order. Then, we redefine the cost function of the post-CSI
as:

F (w,χ) ≡
∑
ω

∑
rT

∥ẼS(ω; rT, rR)− G̃S[w]∥2ΩS∑
rT

∥ẼS(ω; rT, rR)∥2ΩS

+
∑
ω

∑
rT

∥χ(ω; r)ÊT(ω; rT, r)− w(ω; rT, r) + χ(ω; r)G̃D[w]∥2
Ω

obj
D∑

rT
∥χ(ω; r)ÊT(ω; rT, r)∥2

Ω
obj
D

(12)

Here the operators G̃S[w] and G̃D[w] are defined as:

G̃S[w] = k2B

∫
Ωobj

D

G̃B∗
R (ω; rR, r

′)w(ω; rT, r
′)dr′ (13)

G̃D[w] = k2B

∫
Ωobj

D

G̃B (ω; r′, r)w(ω; rT, r)dr
′ (14)

Figure 4 depicts the Green’s function model utilized in
this method, which offers several advantages. One of the
significant benefits is that it can improve the accuracy of
complex permittivity reconstruction within the limited ROI
by drastically reducing the number of unknowns. Moreover,
this method considerably decreases the computational com-
plexity, eliminating the need for the forward solver-based
calculation of the Green’s function in both the data and state
equations.

E. Procedure of Proposed Method

The processing flow of the proposed method is summarized
as follows.
Step 1): The dielectric profile of the background media,

e.g., multi-layered media, is obtained by a prior
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Fig. 5: Processing of the proposed method.

knowledge or other estimation method, like [26].
And this contrast function is defined as χbg ≡
(χ1, ..., χn, ..., χNlayer

).

Step 2): The total field in the ROI as ÊT(ωi; rT, r) is
updated for each angular frequency ωi, using CSI
with fixed χ(ωi, r) determined by χbg, where the
Green’s function in free space is used.

Step 3): The Green’s functions G̃B
T(ωi; rT, r) and

G̃B
R(ωi; rR, r) are calculated in Eqs. (5) and (6),

respectively, and ẼTB(ωi; rT, rR) is calculated
using Eq. (8). Then, the CSI-enhanced radar image
is calculated as Ĩ(r) using Eq. (7).

Step 4): The limited ROI is determined as Ωobj
D in Eq. (9)

and the post CSI process is performed to minimize
the cost function and obtain the final reconstruction
profile of the buried object.

Figure 5 shows the flowchart of the proposed method. Given
that there are various definitions of Green’s functions in our
proposed method, as outlined in Eqs. (5), (8), (10), and (11),
we provide a summary of their definitions and roles in Table
I.

III. RESULTS : FDTD NUMERICAL TEST

A. Numerical Setting

This section presents the 2-D FDTD numerical tests, which
assume ground-penetrating radar for a multi-layer ground
medium. Herein, we presume mono-static configuration,
where the transmitter and receiver are located in the same
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Fig. 6: Ground truth profiles for relative permittivity and
conductivity in Case 1.
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Fig. 7: Ground truth profiles for relative permittivity and
conductivity in Case 2.

place. We consider three planar ground layers located in the
vacuum: the first, second, and third layers model dry, humid,
and saturated clay, respectively, with each dielectric property
referred from the literature [34]. We assume the two types of
buried objects. We assume two types of buried objects: an air
void, named as Case 1, and a wet clay, categorized as Case
2. Figures 6 and 7 show the target cases for Cases 1 and
2, respectively, and Table II shows the dielectric parameters
and dimensions of each layer and buried object. We perform
a scan using a set of transmitters and receivers located at the
same position along the straight line of y = 200 mm, spaced
at 100mm intervals. This spacing should be shorter than the
center wavelength in the 2nd layer, which was 211 mm, to
avoid a grating lobe effect. The total number of observation
points, as a result, is 17. We assume the L-band GPR radar
model, which has a center frequency of 0.58 GHz and a
bandwidth of 0.37 GHz. The theoretical determination of the
range and cross-range resolutions of SAR image is dependent
on parameters such as bandwidth, center wavelength, and
synthetic aperture length. Specifically, at a depth of 40 cm
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TABLE I: Definitions and roles of Green’s functions used in the proposed method.

Notations Definitions Background media Roles
G̃B

T(ω; rT, r)

G̃B
R(ω; rR, r)

Eqs. (5) and (6) Stratified media
Generating propagation model in stratified media

in CSI-Enhanced CI in Eq. (7)

GB
air(ω; rR, r) Eq. (8) Free space

Used for clutter suppression
from stratified media in Eq. (8)

G̃B
R(ω; rR, r) Eq. (10) Stratified media

Used for data equation (Eq. (13))
for generating the cost function in Eq. (12)

G̃B (ω; r′, r) Eq. (11)
Homogeneous media

(Average of stratified media)
Used for state equation (Eq. (14))

for generating the cost function in Eq. (12)

TABLE II: Dielectric parameter for each layer and object.

Relative permittivity Conductivity [S/m] Dimensions [mm]
Background 1.0 0 -
First Layer 3.0 0.01 1600 mm × 200 mm

Second Layer 6.0 0.1 1600 mm × 200 mm
Third Layer 10.0 1.0 1600 mm × 200 mm

Object (Case 1) 1.0 0 100 mm × 100 mm
Object (Case 2) 10.0 1.0 100 mm × 100 mm

TABLE III: Conditions for Green’s function.

Condition Green’s func. in (3) Green’s func. in (4)
Data Eq. State Eq.

Condition I FDTD FDTD
Condition II CSI FDTD
Condition III FDTD Hankel Func.
Condition IV CSI Hankel Func.

with ϵB = 6, the range and cross-range resolutions are 76 mm
and 53 mm, respectively. We set the cell sizes for the FDTD,
radar image, and CSI inversion to 10 mm, which is less than
1/10 wavelength in the 3rd layer, which is 163 mm. For the
processing of SAR or CSI, we utilize 59 frequency samples
within the 10 dB bandwidth. Notably, a spatial resolution of
the CSI is defined as the size of the inversion cell, which is
10 mm.

B. Results: Radar Image Reconstruction

First, we present the reconstruction results obtained
through the radar-based imaging method described in Sec.
II-C, which is referred to as the conventional SAR in [8].
Figures 8 and 9 show the reconstruction images obtained
through the conventional SAR and the CSI-enhanced SAR
approaches. In the conventional SAR approach, the back-
ground medium is assumed to be homogeneous with a con-
stant permittivity, denoted as ϵB, with the surface reflection
from the first layer eliminated. In this case, a value of
ϵB = 3.0 is set for the conventional SAR approach. The
results indicate that the conventional SAR approach suffers
from significant clutter responses from the second or third
layers, and it cannot accurately locate the actual buried object
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Fig. 8: Reconstruction results of each SAR method in Case
1.

in either case. Moreover, even if we eliminate the clutter
responses caused by the heterogeneity of the background
media, the reconstruction image heavily depends on the
selected relative permittivity, ϵB. This dependence poses a
critical challenge when an inappropriate relative permittivity
is selected, or when dealing with cases involving multiple
objects located in different layers. On the other hand, the
CSI-enhanced SAR approach can accurately locate and shape
the buried object to a certain extent. These images focus on
the center of the upper surface, as reflections occur on the
upper surface of the buried object. Furthermore, the CSI-
enhanced SAR approach avoids unnecessary responses due
to the heterogeneity of the background media, as the Green’s
function used in Eqs. (5) and (6) includes the effects of
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Fig. 9: Reconstruction results of each SAR method in Case
2.
TABLE IV: RMSE for permittivity and conductivity under
each condition of Green’s function

RMSEϵ RMSEσ S/m
Condition I 2.63 0.07
Condition II 2.04 0.07
Condition III 3.73 0.09
Condition IV 2.40 0.04

multiple scattering and propagation velocity changes for each
layer. The radar images obtained through the CSI-enhanced
SAR approach are utilized in the post-CSI process to retrieve
the complex permittivity of the object.

C. Results: Complex Permittivity Reconstruction

1) Relevance of Green’s functions: In this section, we
investigate the effectiveness of the selected Green’s function
for the ROI-limited CSI, as described in Sec. II-D, , by
examining the dielectric profile reconstructions assuming a
Case 1 object using four different Green’s function patterns.
Table III provides the definitions of each condition. The
Green’s functions for the data and state equations used in Eqs.
(3) and (4) are provided by the FDTD, CSI, or the analytical
Hankel functions, respectively, where the wavenumber kB
in Eq. (11) is defined as that of the 2nd layer. Note that
Condition I corresponds to an ideal situation where both
Green’s functions are correctly given, while Condition IV
assumes the most practical situation, where the FDTD-based
forward solver is not introduced to generate a final recon-
struction image. Figure 10 shows the reconstruction results
for relative permittivity and conductivity in each condition.
Here, we set the iteration number of the CSI to 1000, and
the background response from the multi-layered medium,
excluding the object, is completely eliminated by the FDTD
calculation. To validate only the error factor of the Green’s
function, we provide the true ROI in each condition.

For a quantitative evaluation of the reconstruction image,
we introduce the following root mean square error (RMSE)

for relative permittivity and conductivity:

RMSEϵ =
1

NROI

√√√√NROI∑
i=1

(ϵi − ϵi,true)
2 (15)

RMSEσ =
1

NROI

√√√√NROI∑
i=1

(σi − σi,true)
2 (16)

where i denotes the index number of the ROI cell, ϵi and
σi are the estimated relative permittivity and conductivity,
respectively, while ϵi,true and σi,true denote their true values.
Table IV shows the RMSEϵ and RMSEσ in each condition.
These figures and results demonstrate that the reconstruc-
tion results do not significantly depend on each condition,
whereas the RMSEϵ in Condition III is slightly worse in
other conditions. These results demonstrate that the CSI-
based estimation in Data Eq. and the Hankel function-based
approximation in State Eq. offer a reliable estimate for the
FDTD (referential data) based Green’s function, even though
the Hankel function assumes a homogeneous background.
The reconstruction accuracy of the CSI for the data equations
has also been discussed and validated in the literature [8],
[9], aiming for the accuracy of radar imaging. Regarding
the state equation, it is notable that using the homogeneous-
based Green’s function (Hankel function) provides almost the
same level of accuracy as using the referential (FDTD-based)
Green’s function. It is worth noting that both RMSEϵ and
RMSEσ exceeds the true value (ϵr, σ) = (1.0, 0.001 S/m)
under all conditions. This is because we set the background
dielectric parameter (ϵr, σ) = (6.0, 0.1 S/m) in the ROI
limitation scheme, which matches the second layer. This is
due to the fact that the ROI is incorporated within the second
layer. Additionally, we tackle an intensely ill-posed condition
due to the limited illumination angle, and we assume a high
contrast object, such as air in concrete material, even with the
introduction of the ROI limitation scheme. Regardless, our
proposed approach maintains substantial improvement from
the initial RMSE (RMSEϵ,RMSEσ) = (5.0, 0.099 S/m) by
introducing the ROI limitation scheme.

2) Final Reconstruction Results: Figure 11 and 12 show
the final reconstruction results for Cases 1 and 2, respectively,
in both the true ROI and radar-based ROI scenarios. Note
that the Condition IV is used for all results in the proposed
method. Here, the background response, which includes only
scattered components from the multi-layered medium exclud-
ing the object, is eliminated by the CSI-based background
clutter generation, as described in Eq. (8). The iteration
number of the CSI is 1000, and the threshold α = 0.2,
is set. Focusing on the case of the original CSI, without
using the ROI limitation, the final reconstruction could not
provide any meaningful reconstruction, and it was almost
equivalent to the background air medium. On the contrary,
the proposed CSI with ROI limitation offers more accurate
results, especially for the true ROI scenario, by significantly
reducing the number of unknowns. It is important to mention
that the reconstruction results for the true ROI case in
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Fig. 10: Reconstruction results using each condition, assuming Case 1 object. 1st line: Relative permittivity. 2nd line:
Conductivity.
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Fig. 11: Reconstruction results by each CSI method in Case 1. 1st line: Relative permittivity. 2nd line: Conductivity.

Figures 11-(c) and (g) are less accurate compared to those
achieved in Figures 10-(d) and (h), even though condition
(IV) was used in both scenarios. This discrepancy is because
the background clutter in Fig. 10-(d) and (h) is generated
in FDTD, whereas it is estimated by the CSI outputs in
Figs. 11-(c) and (g), indicating that the background clutter
could not be completely eliminated by the CSI. Although the
results inn Fig. 10-(d) and (h) assume that the background
clutter is completely eliminated by the FDTD, namely, the
ideal case, in the case of Fig. 11-(c) and (g), these clutter
components are reconstructed by the CSI and are estimated
in Eq. (8). Thus, these comparisons demonstrate that the
clutter response suppression performance directly affects the
final reconstruction results, and similar discussions have been
made in [8]. Tables V and VI show the RMSEs in Cases
1 and 2, respectively. These comparisons also demonstrate
that our proposed scheme has a concrete superiority over the
original CSI, even when using radar-based ROI estimation.
Notably, as in the results in Fig. 11 and 12, the accuracy
of the radar image directly influences the reconstruction
accuracy in the complex permittivity. While it is generally
challenging to provide a complete estimate of the ROI using
the radar image due to the limited spatial resolution or surface

reflection effects from the ROI boundary, there are strategies
to update the ROI using the CSI scheme as discussed in [27].
Nonetheless, the methods of providing the radar image as the
ROI remains a critical issue and optimizing the inclusion of
the ROI using the features of the inverse scattering method
is an important future task.

As a reference, we presente a case using only single
frequency data for CSI reconstruction, where the proposed
method with the radar-based ROI limitation scheme is ap-
plied. Figure 13 displays the reconstruction results for Cases
1 and 2, where one frequency sample of 0.44 GHz, approx-
imately the center frequency, is used for the CSI inversion.
Table VII also compares the RMSEs between multiple (59
samples) and single frequency data for each case. As indi-
cated by these results in Fig. 11 or 12, the reconstruction
accuracy noticeably decreases compared with the multifre-
quency inversion, especially in Case 2, which involves a
high contrast object. Therefore, the multifrequency inversion
process is required to maintain reconstruction accuracy.

Here, the computational costs for each method is investi-
gated as follows. Table VIII presents the actual computational
time, using an Intel Xeon Gold 5218 x4 processor with 3072
GB RAM, and it shows that our proposed method remarkably
reduces the computational cost due to the massive reduction
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Fig. 12: Reconstruction results by each CSI method in Case 2. 1st line: Relative permittivity. 2nd line: Conductivity.

TABLE V: RMSE for permittivity and conductivity recon-
struction in Case 1.

RMSEϵ RMSEσ S/m
Original CSI (w/o ROI limitation) 5.63 0.58

Proposed CSI (w/ true ROI) 3.25 0.12
Proposed CSI (w/ radar ROI) 2.63 0.07

TABLE VI: RMSE for permittivity and conductivity recon-
struction in Case 2.

RMSEϵ RMSEσ S/m
Original CSI (w/o ROI limitation) 5.68 0.58

Proposed CSI (w/ true ROI) 3.99 1.06
Proposed CSI (w/ radar ROI) 2.67 0.43

TABLE VII: RMSE in using single and multi frequency data
in the proposed method w/ the radar based ROI limitation.

Case 1 Case 2
ℜ[ϵ] ℑ[ϵ] ℜ[ϵ] ℑ[ϵ]

Multi frequency (59 samples) 2.63 0.07 2.63 0.43
Single frequency (1 sample) 3.14 0.08 3.14 0.54

in the number of unknowns, from 9600 to 300. Moreover, the
Green’s function in data and state equations is calculated by
the CSI and the analytical form, such as the Hankel function.
This considerably reduces the necessary computational cost
required in each iteration step, which is advantageous over
the method using FDTD-based Green’s function generation.

D. Sensitivity to Noise

This section presents the reconstruction results in the
presence of additive noise. Herein, white Gaussian noise
components are directly added to the recorded total fields in
the time domain. The signal-to-noise ratio (SNR) is defined as
the ratio of maximum signal power to noise power. Notably,
the signal only included the reflection response from the
buried object. Thus, each surface reflection from stratified
media is excluded in the SNR calculation. We investigated
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Fig. 13: Reconstruction results in using single frequency data
at 0.44 GHz, in assuming the proposed method with the radar
based ROI limitation. 1 st line: Case 1. 2nd line : Case 2.

TABLE VIII: Computational complexity and actual run time
in each process.

Method Run time
Original CSI (w/o ROI limitation) 10 hours

Proposed CSI (w/ radar ROI) 5 min

two scenarios with SNR levels of 30 dB and 20 dB, which
are attainable in realistic situations as per references [35],
[36]. Figures 14 and 15 display the reconstruction images
for Cases 1 and 2 for the CSI-enhanced SAR images as
well as the relative permittivity and conductivity provided by
the proposed ROI-limited CSI at SNR levels of 30 and 20
dB, respectively. In the proposed CSI, we assumed the radar-
based ROI with Condition IV, thereby facilitating comparison
with the results in Fig. 11 and 12 (d) and (h)as the noise-
free case. Additionally, Table IX shows the RMSEs for each
obtained image. Focusing on the CSI-enhanced SAR images,
it is apparent that the provided images are nearly identical to
those in the noise-free situation (Fig. 8 and Fig. 9) for both
cases. This similarity is due to the SAR’s image generation,
which relies on a coherent integration process as in Eq. (7),
significantly suppressing the noise component. In contrast,
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Fig. 14: Reconstruction results in each CSI method at Case 1 in SNR of 30 dB. 1 st line: Case 1. 2nd line : Case 2.
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Fig. 15: Reconstruction results in each CSI method at Case 1 in SNR of 20 dB. 1 st line: Case 1. 2nd line : Case 2.

TABLE IX: RMSE in each SNR level.

Case 1 Case 2
ℜ[ϵ] ℑ[ϵ] ℜ[ϵ] ℑ[ϵ]

SNR = ∞ dB 2.63 0.07 2.63 0.43
SNR = 30 dB 2.86 0.08 3.02 0.45
SNR = 20 dB 2.87 0.07 3.36 0.50

the reconstruction of relative permittivity and conductivity
encounters inaccuracy due to noise, particularly for 20 dB in
Cases 1 and 2. Meanwhile, the results for 30 dB almost mirror
those provided in the noise-free situation. To improve the
reconstruction accuracy in lower SNR cases, we may need to
employ a noise-reduction filter, such as matched filtering, as
a preprocessing step in the CSI-based reconstruction scheme.

E. Further Discussions

This section discusses the proposed method’s practica-
bility, applicability, and potential limitations in real-world
applications. It is important to note that applying this method
to a real scenario necessitates an effective calibration process,
converting the experimental data into a simulation data.
Various approaches have been developed for this calibration,

including linear transfer function-based methods [37], [38]
and deep learning-based processing [39], [40]. However, it
is challenging to fully convert experimental data into ideal
simulation data as it requires accurate parameters such as
dielectric property, dimensions or structures of antennas, or
other components such as cable or insertion loss of a vector
network analyzer or radar module. Our previous study [41]
demonstrated the successful CSI-based complex permittivity
reconstruction in a nondestructive testing (NDT) model using
the L-band UWB radar module, comparable to those assumed
in this GPR model. Consequently, future efforts should focus
on applying an effective calibration approach using a real
radar module and stratified ground media.

It should also be noted that unlike other inverse scat-
tering approaches, our proposed method does not require
the forward solver to generate the Green’s functions for a
heterogeneous stratified model. In other words, the Green’s
function in the data equation can be provided by the opti-
mized total fields from the pre-CSI process, and the function
in the state equation is approximated as an analytical Hankel
function. This approximation effect is deemed acceptable
in the reconstruction results. These advantages enhance the
applicability of our proposed method to realistic scenarios.
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IV. CONCLUSION

This paper presented the radar image enhanced complex
permittivity retrieval method of an object buried in multilay-
ered ground media using GPR investigation. The method is
based on the use of the specific inverse scattering method
known as CSI, which provides the total fields in the ROI as
optimization outputs. These total fields are then used to gen-
erate an accurate Green’s function model in heterogeneous
background media, which enhances the synthetic aperture-
based radar image. The resulting radar image is then used
in the post-CSI processing to improve the reconstruction
accuracy of the complex permittivity of the buried object
by significantly reducing the number of unknowns through
ROI limitation. The proposed scheme is validated through
2-D FDTD numerical analysis, which demonstrates its abil-
ity to enhance the reconstruction accuracy in different soil
layers, including an air, and a wet clay target. Moreover, the
proposed method is computationally efficient due to the use
of the CSI output and analytical Hankel function for Green’s
function used in the CSI cost function. Interestingly, there
are promising inverse scattering approaches that eliminate
the need for an iterative use of the forward solver, such as
e.g., [42]–[44]. Thus, our proposed scheme can be extended
to integrate with these algorithms, provided that accurate
total fields in the ROI are available. Future work includes
an experimental study with a 3-D model extension.
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