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Contrast Source Inversion for Objects Buried into Multi-Layered
Media for Subsurface Imaging Applications

Yoshihiro YAMAUCHI†, Nonmember and Shouhei KIDERA†a), Senior Member

SUMMARY This study proposes a low-complexity permittivity esti-
mation for ground penetrating radar applications based on a contrast source
inversion (CSI) approach, assuming multilayered ground media. The ho-
mogeneity assumption for each background layer is used to address the
ill-posed condition while maintaining accuracy for permittivity reconstruc-
tion, significantly reducing the number of unknowns. Using an appropriate
initial guess for each layer, the post-CSI approach also provides the dielec-
tric profile of a buried object. The finite difference time domain numerical
tests show that the proposed approach significantly enhances reconstruction
accuracy for buried objects compared with the traditional CSI approach.
key words: ground penetrating radar (GPR), multi-layer ground model,
inverse scattering problem, contrast source inversion (CSI)

1. Introduction

Owing to its effectiveness in preventing catastrophic road
or tunnel collapses caused by aging or earthquake, the de-
mand for nondestructive testing of infrastructure, such as
roads or objects buried in the ground, has grown in recent
years. Although electromagnetic testing techniques, such as
electric inspection [1], [2] or bore hole radar [3], are promis-
ing, the requirement of driving electrodes into the ground
makes them unsuitable for speedy and cost-saving screen-
ing. As a promising alternative, microwave ground pene-
trating radar (GPR) has some advantages, such as quick in-
vestigation with compact equipment, which also provides
a deep penetration depth for low loss media, such as dry
sand or soil, and high range resolution using an ultra wide-
band signal. The major approach for GPR imaging issues
is the confocal approach, such as a synthetic aperture pro-
cess [4] or range migration approach [2], which enhances
cross-range resolution using an equivalently large aperture.
However, the above radar approach rarely retrieves an ob-
ject’s dielectric property, and the image reconstruction ac-
curacy is highly dependent on the background propagation
model, which is usually assumed to be homogeneous me-
dia with known relative permittivity. Although several stud-
ies have focused on multiple layered backgrounds [5], they
are based on some unrealistic assumptions, such as com-
plete knowledge of relative permittivity for each layer, and
in particular, suffer from unnecessary responses caused by
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multiple reflections among layers.
In contrast, inverse scattering approaches have been

considered in recent years for the GPR model, where it pro-
vides a quantitative profile of the complex permittivity of an
object by solving the domain integral equation. In general,
the above inverse scattering problem has a nonlinear prop-
erty, and the ill-posed condition becomes severe in the GPR
model because a limited angle of measurement is available.
Although some studies have focused on the inverse scatter-
ing approach [3], [6], they still suffer from inaccuracy due to
the above ill-posed condition, especially for local optimiza-
tion problems with inappropriate initial estimates.

Focusing on the permittivity estimation for ground me-
dia, the common middle point scheme is one of the most ma-
jor approaches [7], however, it is not basically applicable to
mono-static or bi-static configuration with fixed separation,
which limits the applicability range. We introduce a contrast
source inversion (CSI) scheme, which is based on an initial
estimate of the relative permittivity of a multilayer model, to
address the aforementioned issue. CSI is a potential inverse
scattering (IS) method with lower complexity that simulta-
neously solves the state and data equations, avoiding the it-
erative use of the forward solver, such as the finite differ-
ence time domain (FDTD) [8], [9]. Focusing on the CSI fea-
tures, we introduce cost function minimization based on rel-
ative permittivity estimation using the assumption that each
layer has a homogeneous media. This approach was ini-
tially developed by Morimoto [10], who assumed terahertz
band imaging, but ignored buried object imaging, and only
aimed at relative permittivity estimation for each layer. Dif-
ferent from the above study [10], we apply the post-CSI ap-
proach using the initial estimate of the relative permittivities
of multilayers, part of which has been reported in [11]. The
FDTD-based numerical tests, assuming a three-multilayer
background with an air cavity object, demonstrate that the
proposed method considerably enhances reconstruction ac-
curacy compared with that obtained by the traditional CSI
method.

2. Method

2.1 Observation Model

The observation model, assuming multi-layered subsurface
imaging, is shown in Fig. 1, where a single set of trans-
mitter and receiver is scanned on a straight line in paral-
lel with the y axis. ET(ω; rT, rR) denotes the total electric
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Fig. 1 Observation model.

field, recorded at rR, where the transmitter is located at rT.
ΩS and ΩD defines an observation area and a region of in-
terest (ROI), respectively. Each layer is assumed to have a
uniform dielectric profile parallel to the scanning line, and
the thickness of each layer is given, for simplicity. Here
the scattered electric field is defined as: ES(ω; rT, rR) ≡
ET(ω; rT, rR) − EI(ω; rT, rR), where ω is the angular fre-
quency and EI(ω; rT, rR) denotes the incident electric field.

2.2 Contrast Source Inversion

We introduce the CSI method as a promising inverse scat-
tering approach in terms of lower complexity and accuracy.
The methodology is briefly presented as follows. First, the
scattered electric field ES(ω; rT, rR), defined in the previous
paragraph, is formulated by the following domain integral
equation:

ES(ω; rT, r′) = k2
B

∫
ΩD

GB(ω; r, r′)w(ω; rT, r)dr, (1)

Here kB and GB(ω; r, r′) express the wave number and the
Green’s function of the background media, respectively,
which is defined as εB(r). The contrast function is defined
as χ(ω; r) ≡ (ε(ω; r) − εB(r))/εB(r) where ε(ω; r) denotes
the complex permittivity at the specific angular frequency
ω at the position r including the object. As the dummy
variable in the optimization process, the contrast source
w(ω; rT, r) ≡ χ(ω; r)ET(ω; rT, r) is introduced. CSI focuses
on the two physical conditions that Eq. (1) must be satisfied
at r′ ∈ ΩS and r′ ∈ ΩD. In the original CSI scheme, χ(ω; r)
and w(ω; rT, r) are simultaneously optimized using the fol-
lowing formula:

(χ̂(r), ŵ) = arg min
χ,w

F(χ, w) (2)

F(χ, w) ≡
∑

rT
‖ES(ω; rT, rR) − GS[w]‖2

ΩS∑
rT
‖ES(ω; rT, rR)‖2

ΩS

+

∑
rT
‖χ(ω; r)EI(ω; rT, r′)−w(ω; rT, r′)+χ(ω; r′)GD[w]‖2

ΩD∑
rT
‖χ(ω; r′)EI(ω; rT, r′)‖2ΩD

,

(3)

Here GS and GD are defined as follows:

GS[w]=k2
B

∫
ΩD

GB(ω; r, rR)w(ω; rT, r)dr, (rR ∈ΩS), (4)

GD[w]=k2
B

∫
ΩD

GB(ω; r, r′)w(ω; rT, r)dr, (r′ ∈ΩD), (5)

where ‖·‖2
ΩS

and ‖·‖2
ΩD

are the l2 norms defined inΩS andΩD,
respectively. Since the total field in the ROI ET(ω; rT, r), in-
cluded in w(ω; rT, r), is simultaneously optimized, it does
not require an iterative computation of the forward solver,
such as the FDTD method, and then, it achieves significantly
lower complexity, than other approaches, such as distorted
Born iterative method (DBIM). However, if a larger scale of
ROI is assumed, it suffers severely from the ill-posed con-
dition, that the number of unknowns exceed than that of the
measurement data.

2.3 Proposed Method

To overcome the above ill-posed condition problem, we in-
troduce a scheme for massively reducing the number of un-
knowns by assuming that each background layer has ho-
mogeneous media with constant permittivity, which is usu-
ally acceptable in various GPR situations. A similar idea
has been developed in the terahertz waveband analysis [10],
however, the study did not focus on buried object imaging
assuming ground penetrating applications.

2.3.1 Permittivity Estimation for Each Layer

Meanwhile, the proposed method focuses on the permittiv-
ity estimation of each layer as background media in the first
step, excluding buried objects. Assuming the above condi-
tion, a variable for the permittivity for each layer is defined
as εML ≡ (ε1, . . . , εn, . . . , εNlayer ), where εi denotes the permit-
tivity of the i-th layer and the Nlayer is the number of layers.
Thus, the contrast function assuming the multi-layer model
χ(r; εML) is then defined as follows:

χ(r; εML) ≡ χi, (r ∈ ΩD,i, i = 1, . . . ,Nlayer) (6)

where ΩD,i denotes the i-th layer of the ROI. χi ≡(
εi +

σi

jωε0
− εB,vc

)
/εB,vc, where σi is the conductivity of the

i-th layer. Note that, for simplicity, this study assumes that
σi is given.

To determine the optimal solution of εML, the cost
function in Eq. (3) for assuming χ(r; εML), is minimized in
terms of the variable w(ω, rT, r), using the CSI updating se-
quences, where the εB,vc = 1, namely, the vacuum back-
ground. The minimized residual for the assumed multi-layer
variable χ(r; εML) is calculated as follows:

F̃(εML) = min
w

F(χ(r; εML), w) (7)

Each permittivity for layer εML ≡ (ε̂1, . . . , ε̂n, . . . , ε̂Nlayer ) is
determined as:

ε̂ML = arg min
εML

F̃(εML) (8)

Then, the initial estimate for χ̂(r; εML) is updated as:

χ̂(r; ε̂ML) ≡ χ̂i, (r ∈ ΩD,i, i = 1, . . . ,Nlayer) (9)
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Fig. 2 Flowchart of the proposed scheme.

Fig. 3 Ground truth profiles of relative permittivity.

where χ̂i ≡
(
ε̂i +

σi

jωε0
− εB,vc

)
/εB,vc holds. Figure 2 shows

the processing flow of the proposed method. Note that, the
processes in Eqs. (7)–(9) are performed in parallel for each
combination of εML, as shown in Fig. 2. Particularly, the
optimal solution of εML is searched from all possible com-
binations of εML to avoid a local optimal issue.

2.3.2 Object Reconstruction

At the second step, the CSI scheme with the updated initial
estimate as χ̂(r; ε̂ML) is used to reconstruct a buried object.
While this method neglects the existence of buried objects
at the first stage, in determining the permittivity pattern in
Eq. (8), a more appropriate initial estimate (i.e., the multi-
layer profile) could provide more accurate reconstruction for
buried objects with a much less iteration step than those re-
quired in the original CSI scheme.

3. Results: Numerical Test

3.1 Numerical Setting

This section describes FDTD-based numerical tests, where
a three-multilayer model is assumed. The 17 sets of trans-
mitter and receiver are linearly arranged along y = 200 mm
with 100 mm spacing. The raised cosine modulated pulse
with a center frequency of 0.5 GHz and a bandwidth of
0.4 GHz is set assuming the L-band GPR scenario. Tables 1
and 2 show the dimensions of each layer or object and the di-
electric parameters for the two different GPR models, where

Table 1 Dimensions of each layer and object.

Object Dimension [mm]
Back ground medium 2000 × 1000

Layer 1 1600 × 200
Layer 2 1600 × 200
Layer 3 1600 × 200

Buried Object 100 × 100

Table 2 Dielectric property for each model.

#1 #2
Object εr σ[S/m] εr σ[S/m]

Back ground medium 1 0 1 0
Layer 1 4 1.00 × 10−7 5 1.00 × 10−3

Layer 2 5 1.00 × 10−4 15 1.00 × 10−2

Layer 3 6 1.00 × 10−3 35 1.00 × 10−1

Buried Object 1 0 1 0

Fig. 4 Cross-sectional profiles of residuals of the cost function in each
case at the case of SNR of 20 dB. White and red dots are true and estimated
permittivity, respectively.

Table 3 Estimation results for relative permittivity at the case of SNR of
20 dB.

Relative permittivity
Model Layer 1 Layer 2 Layer 3

True Est. True Est. True Est.
#1 4 3.90 5 5.01 6 6.10
#2 5 5.45 15 16.1 35 31.6

the buried object is assumed to be an air cavity. These pa-
rameters were extracted from the literature [12], assuming
dry or wet sand or clay. In particular, Case 1 assumes sand
dry media for all layers, and Case 2 presents the sandy dry
soil for the 1st layer, sandy wet soil for the 2nd layer, and a
clay saturated layer. The cell sizes for both FDTD and CSI
are set to 10 mm, and the total number of cell sizes allo-
cated to all multilayer regions is 9600, whereas the number
of data samples is 289, which means a much more severe ill-
posed case. A Gaussian white noise is added to the scattered
electric field in the time domain, and the signal-to-noise ra-
tio (SNR) is defined as the time domain ratio of maximum
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Fig. 5 Reconstruction results in each case at the SNR of 20 dB. Color denotes the relative permittivity.

signal power to the noise variance. In this case, consider-
ing the same practical scenario as in [13], 20 dB SNR is
assumed.

3.2 Permittivity Estimation for Multiple Layer

This section first introduces the results for permittivity es-
timation by the proposed method, namely, the process from
Eq. (6) to Eq. (9). Note that, the total field in the ROI is given
by the FDTD to focus on the validation of the proposed
scheme. Figure 4 shows each cross-sectional profile for the
minimized residual of the CSI cost function, namely, F̃(εML)
for each combination of εML. In Case #1 and #2, 7 and 6
different samples for permittivity in each layer are investi-
gated, respectively, at the optimization process in Eqs. (7)
and (9). This figure shows that the proposed scheme accu-
rately determines each relative permittivity, using the mini-
mized cost function in each case. Table 3 shows the permit-
tivity estimation results for each case, where more densely
sampled search in Eq. (8) is sequentially done from the re-
sults in Fig. 4. This table shows that our proposed method
retains high accuracy for each layer’s permittivity estimation
in each case. Note that the reconstruction accuracy for the
third layer Case #2 is relatively worse than that in Case #1.
This is because each layer in Case #2 has relatively larger
conductivity, and the reflection responses from the second
and third layer would be considerably smaller than those in
Case #1.

3.3 Reconstruction for Buried Objects

Figure 5 shows the reconstruction images obtained by the
original and proposed CSI methods for Cases # 1 and # 2,
respectively. Here, the original CSI method is calculated
from an initial estimate of permittivity of the 2nd layer me-
dia. The original CSI method could not provide both the ob-
ject profile and the permittivities for the three layers’ back-
ground media because of the inappropriate initial estimate

Table 4 RMSE of relative permittivity at the case of SNR of 20 dB.

Case Original CSI Proposed method
#1 0.99 0.42
#2 13.35 2.67

and highly ill-conditioned scenario. However, the proposed
method could provide a dielectric profile for buried objects
using a suitable initial estimate of background media, which
alleviates the local optimal issue in such an ill-conditioned
problem. Table 4 shows the root mean square errors for rel-
ative permittivity estimations, which also verifies the pro-
posed method’s effectiveness. Note that, in Case # 2, the
dielectric profile for buried object (air) would not be clearly
reconstructed, compared with that in Case #1. This is be-
cause the dielectric contrast between air and background
media is much higher in Case #2, and it leads the difficulty
to reach the global optimum solution. A more suitable ini-
tial estimate would be a promising solution for this problem,
and this is our future task.

4. Conclusion

This study introduced a CSI-based dielectric profile recon-
struction assuming a multiple layer ground model for a mi-
crowave subsurface imaging scenario. To begin, by sub-
stantially reducing the number of unknowns using a ho-
mogeneous assumption, the relative permittivity estimation
scheme provides an accurate estimate for each layer’s per-
mittivity by minimizing the CSI cost function. Subse-
quently, a post-CSI approach reconstructs a buried object
profile using an appropriate initial estimate of multilay-
ered background media. The 2D FDTD numerical analysis
demonstrated that our proposed scheme would work much
better than that obtained by the original CSI method and
could recognize an air cavity object in a high-contrast mul-
tilayered medium. We are now working on experimental
and 3D investigations.
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