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PAPER
Three-dimensional Complex Permittivity Reconstruction via
Wave-number Space Based Deep Neural Network for Microwave
Breast Imaging

Peixian ZHU†a), Student Member and Shouhei KIDERA†b), Senior Member

SUMMARY This study introduces a three-dimensional (3D) complex
permittivity profile reconstruction using a deep neural network, where wave-
number space data compression is applied to reduce the dimension of input
data. Four-dimensional scattered data are converted into a 3D complex
permittivity profile by integrating a 3D convolutional autoencoder and a
multilayer perceptron. The reconstruction accuracy is further improved
through efficient skin surface rejection preprocessing via a fractional deriva-
tive model. An experimental study, using simplified 3D breast phantom and
an ultrawideband radar module shows that our proposed scheme provides
accurate estimates for 3D reconstruction in terms of relative permittivity
and conductivity.
key words: Microwave breast cancer detection, Deep neural network
(DNN), Complex permittivity reconstruction, Ultrawideband (UWB) radar,
Skin surface rejection (SSR).

1. Introduction

Breast cancer is the leading contributor to cancer-
related fatalities among women in worldwide. In 2020, ap-
proximately 2.26 million cases were documented [1]. X-ray
and ultrasound methods are the predominant modalities for
mammography. Nonetheless, the X-ray approach poses a
threat because it requires high-energy exposure to healthy
cells and compression of the breasts during diagnosis, which
causes patient discomfort. Moreover, ultrasound-based diag-
nosis demands considerable experience and skill for cancer
discrimination, making the early detection of breast can-
cer challenging. In light of the significance of early de-
tection and treatment for enhancing patient survival rates,
microwave breast cancer imaging has emerged as a promis-
ing alternative. This method exhibits several advantages,
including low costs, compactness, painlessness, and safety,
which can promote the frequency of cancer screening. Fur-
thermore, normal adipose and malignant tumor tissues show
a significant dielectric contrast in the microwave frequency
band [2, 3]. These findings propel the advancement of mi-
crowave mammography, offering a potential breakthrough
for more effective breast cancer screening methods.

Although radar-based methods are commonly used as a
primary imaging technique for microwave breast cancer de-
tection, [4–7], it suffers a high false-positive rate, particularly
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in dense breast tissues, due to the limited dielectric contrast
between cancerous and fibroglandular tissue. The tomo-
graphic approach, also known as inverse scattering analysis,
offers a distinctive advantage by enabling the quantitative
estimation of the complex permittivity profile by solving
domain integral equations [8–11]. Given the nonlinear, ill-
posed nature of the problem, retaining accurate reconstruc-
tion profiles is difficult, especially for high-contrast breast
media. This issue is distinct in three-dimensional (3D) mod-
els, where a substantial increase in the number of unknowns
intensifies the computational complexity of the reconstruc-
tion process.

To address the aforementioned challenge, numerous re-
searchers have performed optimization based on deep neural
networks (DNNs) using microwave scattered data to retain
accurate two-dimensional (2D) or 3D reconstruction pro-
files [12–14]. In a previous study [15], a comparative U-
Net convolutional neural network was incorporated into the
Born iterative method. However, the input data of U-Net
in this method need to be computed initially through the
Born iterative method, thus increasing the computational
cost. In the study [16], while 3D reconstruction was ob-
tained using five frequency samples by combining 2D con-
trast source inversion and U-Net, the 2D results of the in-
verse problem are needed, leading to high computational
complexity. To achieve accurate 3D permittivity profile re-
construction within an acceptable timeframe, we previously
introduced a direct conversion scheme from scattered data to
simplified 3D profiles of complex permittivity; this method
combines skin surface rejection (SSR) and a neural network
scheme [17]. Conversely, as the number of unknowns sub-
stantially increases, reconstructing high-spatial-resolution
3D profiles, such as those with 1 mm voxel resolutions,
becomes challenging.

In light of the above difficulty, this paper introduces a
DNN scheme with dimension reduction for 3D reconstruc-
tion. This approach incorporates wave-number space (WS)
data filtering and data compression based on a convolutional
autoencoder (CAE). In this method, a 3D spatial profile for
each training breast model is converted into a WS to re-
duce the unknowns using a low-pass filter (LPF). These WS
data are further compressed using the 3D CAE, and the
compressed output of the encoder is extracted. In this con-
text, the trained encoder part of the CAE is replaced with a
fully connected (FC) multilayer perceptron (MLP) to convert
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Fig. 1: Observation model. Array with multiple transmitters
and receivers is rotated at external area of breast.

four-dimensional (4D) scattered data into a 3D complex per-
mittivity profile. Notably, reflections from the skin surface
are dominant in scattered 4D data and should be suppressed
using an appropriate SSR scheme. These schemes also im-
prove the effectiveness of learning in 3D CAE or FC MLP.
Because these DNNs can train the differential components
of a breast profile by eliminating common components, such
as skin and adipose tissue. Thus, the main contributions of
this study are as follows:

1. Significantly reducing the dimensions of input data via
WS- or 3D-CAE-based compression enhances training
efficiency, even when using a small number of training
data.

2. The SSR scheme helps remove redundant components
from scattered data and enables the extraction of differ-
ential parts of each profile.

3. The 4D scattered data can be directly converted into a
3D complex permittivity profile by the trained DNN;
this does not require any optimization process, such as
inverse scattering analysis.

Experimental validation using an ultrawideband (UWB)
radar module and a simplified quantitative breast phantom
demonstrates that our proposed scheme successfully recon-
structs 3D complex permittivity profiles.

2. Method

2.1 Observation Model

Fig. 1 shows the observation model in this study. Trans-
mitters and receivers are configured into circular arrays that
rotate along the vertical direction. 𝑠(𝑡, 𝒓T, 𝒓R, 𝜃) denotes
the scattered electric field from a source position r𝑇 to an
observation position r𝑅 at the rotation angle 𝜃, where 𝑡 is
time.

2.2 Skin Surface Rejection Process

The main idea of this study is directly converting mul-
tidimensional scattered data into a 3D complex permittiv-
ity profile via a DNN scheme. For DNN preprocessing,
we introduce efficient clutter suppression for skin reflec-
tion, which is strong and may mask the internal response.

In our previous studies [17, 18], we proposed an efficient
SSR scheme based on a fractional derivative (FD) model,
hereinafter called SSR-FD, to eliminate the effect of skin
surface reflections and improve the accuracy of reconstruc-
tion [17]. Here, we briefly introduce the SSR-FD method
as follows. First, the reference signal of SSR-FD schemes
𝑠ref (𝑡, 𝒓T, 𝒓R, 𝜃) is provided by calculating the following:

𝑠ref (𝑡, 𝒓T, 𝒓R) =
1
𝑁𝜃

𝑁𝜃∑
𝑖=1

𝑠ref (𝑡, 𝒓T, 𝒓R, 𝜃𝑖) (1)

where 𝜃𝑖 denotes the 𝑖-th rotation angle and 𝑁𝜃 is the total
number of sampled rotation angles. If the distance between
the skin and the elements is constant during array rotation,
then the averaging operation in Eq. (1) will enhance the
signal-to-noise ratio, which is useful for postsuppression.

A past study [17] demonstrated that the SSR-FD
could compensate for frequency-dependent scattering ef-
fects, which are mainly caused by the mutual coupling be-
tween the skin and antenna or other near-field effects. In
this method, the skin surface response is expressed as the
following FD model:

𝑠ref (𝑡, 𝒓T, 𝒓R;𝛼) = F −1 [(j𝜔)𝛼𝑆ref (𝜔, r𝑇 , r𝑅)] (2)

where 𝑆ref (𝜔, 𝒓T, 𝒓R) = F [𝑠ref (𝑡, r𝑇 , r𝑅)], and F denotes
the Fourier transform, (j𝜔)𝛼 denotes the FD operator using
an additional parameter 𝛼. Then, the clutter-eliminated sig-
nal produced by the SSR-FD as 𝑠FD (𝑡, 𝒓T, 𝒓R, 𝜃) is formed
as follows:

𝑠FD (𝑡, 𝒓T, 𝒓R, 𝜃) = 𝑠(𝑡, 𝒓T, 𝒓R, 𝜃)
− �̂�𝑠ref (𝑡 − 𝜏, 𝒓T, 𝒓R; �̂�) (3)

where �̂�, 𝜏, and �̂� are optimized as follows:

( �̂�, 𝜏, �̂�) = argmin
𝐴,𝜏,𝛼

∫ 𝑇r+𝑇W

𝑇r��𝑠(𝑡, 𝒓T, 𝒓R, 𝜃) − �̂�𝑠ref (𝑡 − 𝜏, 𝒓T, 𝒓R; �̂�)
��2 𝑑𝑡 (4)

where 𝑇r represents the rise time of 𝑠(𝑡, 𝒓T, 𝒓R, 𝜃) and 𝑇W
denotes the temporal window length.

2.3 Dimension Reduction by Wave-number Space Expres-
sion

Reducing the dimensions of input data is an essential
part of DNN design for obtaining high-spatial-resolution 3D
profiles via DNN scheme. In this study, we introduce two
types of schemes for dimension reduction. The first one is
based on Fourier-basis expression: WS conversion is applied
to the 3D complex permittivity profile to reduce the WS
data dimension. The second one is CAE-based dimension
reduction, which is described in the next subsection.

WS data compression is described as follows. We de-
fine a discrete 3D profile for relative permittivity 𝜖𝑟 and con-
ductivity 𝜎 as i𝜖 (𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘) and i𝜎 (𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘), respectively,
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Fig. 2: Schematic illustration of the dimension reduction of 3-D breast profile in the proposed approach.

Fig. 3: Processing flow of the proposed scheme. First step: WS compressed data via Ave-sub and SSR-FD processes are input
to 3D CAE model. Second step: Encoder part of 3D-CAE is replaced by FC-MLP to convert the 4-D scattered data to spatial
frequency data of complex permittivity profile for relative permittivity (𝜖) and conductivity (𝜎)

where the subscripts 𝑖, 𝑗 , and 𝑘 denote the voxel indexes
along the 𝑥, 𝑦, and 𝑧 directions, respectively. These parame-
ters can be converted into complex permittivity at a specific
angular frequency 𝜔 as follows:

i𝜖 (𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘) = i𝜖 (𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘) − 𝑖
i𝜎 (𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘)

𝜖0𝜔
(5)

Here, 𝜖0 denotes the permittivity of free space. Then, the
above 3D complex permittivity profile is converted in the WS
as 𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) using 3D Fourier transform, and the
zero-frequency component is shifted to the center of spec-
trum. The following LPF is applied to reduce the dimension
of 𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛):

𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛)

=

{
𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) (𝐾 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) ≤ 𝐾cutoff)
0 ( otherwise )

(6)

where 𝐾 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) denotes the distance from
(𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) to the WS origin and 𝐾cutoff is the cutoff
wave number. The processing is also shown in Fig. 2. Here,
the parameter 𝐾cutoff is selected by considering the balance

between the spatial resolution of the reconstruction profile
and the compression effect of data dimension. A high 𝐾cutoff
value leads to a low compression rate, resulting in a slow
optimization convergence or over-fitting. In contrast, a low
𝐾cutoff leads to a low spatial resolution, causing difficulties
in detecting small cancer tissues.

To focus on differential patterns of wave-number data
as 𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛), we remove common components of
𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) as follows:

𝐼Sub
𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛)
= 𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) − 𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛)

(7)

where 𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) denotes the average pattern of
𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) with 𝑛 samples. We call this process-
ing procedure average subtraction (Ave-Sub). This scheme
is also shown in Fig. 2.

2.4 Dimension Reduction by 3D-CAE

We introduce 3D-CAE-based data compression, to fur-
ther reduce the dimension of the input data for the post DNN
process. In this scheme, we reduce the data dimension by
extracting a hidden layer of the 3D CAE, where the input
and output data of the 3D CAE are defined as the filtered WS
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data described in the Section 2.3. In particular, the feature
data in the hidden layers, defined as 𝒛 ∈ R𝑁ℎ×1 are computed
through supervised learning in the 3D CAE network, where
the input and output data are defined as 𝐼Sub

𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛).
This CAE scheme helps reduce redundant dimensions or
expressions in input data via nonlinear conversion; this is
usually better than linear compression schemes, such as sin-
gular value decomposition. We call the proposed dimension
reduction strategy as 3D-WS-CAE, which combines with
the WS (described in Sec. 2.3) and the 3D CAE reduc-
tion schemes. After the training phase of the 3D CAE is
completed, the input 3D data 𝐼Sub

𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) are con-
verted into the one-dimensional (1D) feature vector 𝒛, which
is processed in the post DNN phase, described in the fol-
lowing section. Figure 3 denotes the processing flow of the
proposed method by introducing the 3D-CAE with WS com-
pressed data. Compared to ordinary 3D-CAE downscaling,
the proposed 3D-WS-CAE downscaling has the following
benefits: Reducing a number of dimension to improve the
computational efficiency, which also contributes a noise re-
duction.

2.5 SSR-FD-MLP integrating with 3D-FFT-CAE

In this study, an FC-MLP-based complex permittivity
profile reconstruction scheme [17] is introduced to retain the
full 3D image of breast media. Here, the SSR-FD-processed
scattered data, denoted as 𝑠FD (𝑡, 𝒓T, 𝒓R, 𝜃), are converted to
frequency-domain data as 𝑆FD (𝜔, 𝒓T, 𝒓R, 𝜃) via 1D Fourier
transform along 𝑡. These 4D scattered data are flatten to the
following 1D input vector 𝑿:

𝑿 ≡ [ 𝜉1,1,1,1, . . . , 𝜉1,1,1,𝑙 , 𝜉1,1,2,1, . . . , 𝜉1,1,2,𝑙 , . . . ,

𝜉1,1,𝑘,1, . . . , 𝜉1,1,𝑘,𝑙 , 𝜉1,2,1,1, . . . , 𝜉1,2,1,𝑙 , 𝜉1,2,2,1, . . . ,

𝜉1,2,2,𝑙 , . . . , 𝜉1,2,𝑘,1, . . . , 𝜉1, 𝑗,𝑘,𝑙 , . . . , 𝜉𝑖,1,1,1, . . . , 𝜉𝑖,1,1,𝑙 ,

𝜉𝑖,1,2,1, . . . , 𝜉𝑖,1,2,𝑙 , . . . , 𝜉𝑖,1,𝑘,1, . . . , 𝜉𝑖, 𝑗,𝑘,𝑙 ]

(8)

Here, 𝜉𝑖, 𝑗 ,𝑘,𝑙 is defined as follows:

𝜉𝑖, 𝑗,𝑘,𝑙 ≡ 𝑆FD
(
𝜔𝑖 , 𝒓T,j , 𝒓R,k , 𝜃𝑙

)
(9)

where 𝑆FD (𝜔𝑖 , 𝒓T,j, 𝒓R,k, 𝜃𝑙) denotes the scattered data at the
i-th angular frequency from the j-th transmitter to the k-th
receiver at l-th angle.

To connect the trained 3D CAE network, we convert
the input vector 𝑿 into the feature vector 𝒛 (defined in
Sec. 2.3) via a FC MLP, as shown in Fig. 3. After the
training sequences of this FC MLP are completed, non-
trained 4D scattered data are converted into 3D WS data
as 𝐼Sub

𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛). Then, the reconstructed complex
permittivity profile ĩ𝜖 (𝑥, 𝑦, 𝑧) is obtained as follows:

ĩ𝜖 (𝑥, 𝑦, 𝑧)
= F3D

−1 [𝐼Sub
𝜖 (𝑘𝑥,𝑖 , 𝑘𝑦, 𝑗 , 𝑘𝑧,𝑘) + 𝐼𝜖 (𝑘𝑥,𝑖 , 𝑘𝑦, 𝑗 , 𝑘𝑧,𝑘)]

(10)

where F3D
−1 denotes the inverse 3D Fourier transform. The

3D WS data in the original size 𝐼Sub
𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) and the

average pattern in the original size 𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) are

(a) Top view of phantom. (b) Side view of radar and
phantom.

Fig. 4: Experimental setup for UWB radar and simplified
breast phantom.

Fig. 5: 3-D structure of simplified breast phantom. Cen-
tral 18 cubes are exchangeable in terms of adipose, fibro-
glandular, and cancer mimicking dielectric cells.

recovered by applying zero padding to 𝐼Sub
𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛)

and 𝐼𝜖 (𝑘𝑥,𝑙 , 𝑘𝑦,𝑚, 𝑘𝑧,𝑛) , respectively.

3. Experimental Validation

3.1 Observation and Target Model

Experimental validation based on a simplified 3D breast
phantom is conducted as follows. Fig. 4 shows the experi-
mental setup, including a handheld UWB radar module, de-
veloped by Prof. T. Kikkawa at Hiroshima University [19].
This UWB module can be operated at frequencies of 3.1-10.0
GHz. The array, consisting of eight transmitters and eight
receivers, is placed along the circumference of a hemisphere
with a 75 mm radius. It can measure scattered data from
different illumination angles within 360◦ with 40◦ intervals.
For reliable quantitative error analysis, we introduce the 3D
breast phantom in Fig. 5. The phantom is designed such
that the skin and the surrounding adipose media are made by
solid or semisolid materials. It includes 18 cubic cells (12
mm length) embedded in the center of the phantom. Table
1 provides the dielectric properties of 5 types of dielectric
materials at 2.4 GHz, namely, adipose, fibroglandular, and
three variations of cancer tissues, which have low, moderate,
and high dielectric properties, respectively. By changing the
cell combination patterns, we generate 66 patterns for the
post DNN scheme.
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Table 1: Dielectric parameter for each tissue cell.
Tissue (State) Relative permittivity Conductivity [S/m]

Adipose (semi-solid) 3.6 0.09
Skin 22.84 0.97

Mammary gland 22.84 0.97
Cancer type 1 27.51 1.07
Cancer type 2 46.63 2.04
Cancer type 3 32.05 1.56

(a) Ground truth of bottom layer
of relative permittivity.

(b) Ground truth of top layer of
relative permittivity.

(c) w/o SSR-FD (d) w/ SSR-FD

Fig. 6: Performance example 1 of the SSR-FD process.

3.2 Data and Results

3.2.1 Performance of Skin Surface Rejection (SSR-FD)

The SSR-FD performance is described as follows. The
reference signal, defined as 𝑠ref (𝑡, 𝒓T, 𝒓R, 𝜃𝑖) in Eq.(1), is
measured when all 18 cells are allocated as adipose tissue to
attain only the skin reflection component. Fig. 6 and Fig. 7
show 2 examples of SSR-FD application results. As shown
these figures, the SSR-FD scheme effectively suppresses the
strong skin reflection and can extract the response from in-
ner region, namely, cancer or fibroglandular tissue. The
color-bar scales in Figures 6 and 7 - (c) (w/o SSR-FD) are
approximately 6.6 (400/60) times larger than those in Figures
6 and 7 - (d) (w/ SSR-FD). Focusing on the Figures 6 and 7 -
(c) (w/o SSR-FD), strong reflection signals from the skin are
observed in the range of 4.7 ns ≤ 𝑡 ≤ 5.3 ns with the maxi-
mum strength over 300. In contrast, as indicated in Figures
6 and 7 - (d) (w/ SSR-FD) , these skin reflection signals are
considerably suppressed by the SSR-FD scheme within the
same temporal range, allowing for clearer reflections from
the internal area (e.g., cancer or fibroglandular mimicked

(a) Ground truth of bottom layer
of relative permittivity.

(b) Ground truth of top layer of
relative permittivity.

(c) w/o SSR-FD (d) w/ SSR-FD

Fig. 7: Performance example 2 of the SSR-FD process.

(a)

Fig. 8: Histogram of 𝐹sup in SSR-FD process.

cells) at 𝑡 ≥ 5.3 ns. Moreover, since the cancer location in
Fig. 6-(b) is off-center, the signal strength and time delays
in Fig. 6-(d) vary with the rotation angle. Conversely, in
7, where the cancer cell is positioned at the center of the
breast, the signal strengths and delays remain relatively con-
stant across different rotation angles. These results further
demonstrate that our SSR-FD scheme effectively extracts re-
sponses from the internal area by suppressing skin reflection
signals.

For the quantitative evaluation of the suppression per-
formance of SSR-FD, the following criteria are defined:

Fsup =
maxTr<t<Tr+W s̃wSSR (t)
maxTr<t<Tr+W s̃woSSR (t)

(11)

where s̃woSSR(𝑡) and s̃wSSR (𝑡) denote the scattered responses
without and with SSR-FD, respectively. Fsup denotes the
suppression ratio with and without SSR-FD processing in
the allocated time range. Fig. 8 shows the 𝐹sup histogram in
all 66 patterns, where 78.5% of the patterns satisfy 𝐹sup ≤
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(a) Ground truth (top layer, rela-
tive permittivity)

(b) Differential profile only with
Ave-sub processing (top layer,
relative permittivity)

(c) Wavenumber space (d) Central section of average
pattern

(e) Enlarged view after LPF and
Ave-sub process

(f) Differential profile after LPF
WS and Ave-sub process (top
layer, relative permittivity)

Fig. 9: Example of the WS compression and Ave-sub pro-
cessing in the pattern #1.

0.1. This demonstrates the effectiveness of SSR-FD, which
directly affects the quality of the post complex permittivity
imaging.

3.2.2 WS Compression Data

WS compression examples are presented as follows.
Fig. 9 and Fig. 10 show the results of WS LPF compression
and Ave-Sub processing for the pattern #1 and #2, respec-
tively. Here, the LPF parameter 𝐾cutoff is set to 32 rad/m.
As shown in these figures, differential profiles, as shown in
Figs. 9-(b) and 10-(b), are almost recovered by the proposed
dimension reduction scheme, which are also shown in Figs.
9-(f) and 10-(f). In particular, the dimension of CAE inputs
and outputs is decreased from 643 = 262144 to 323 = 32768
using these processes. Notably, regarding the LPF parame-
ters, we used 𝐾cutoff = 16 rad/m or 64 rad/m, to determine
the appropriate 𝐾cutoff value. Considering the balance be-
tween available spatial resolution and dimension reduction,
as described in Sec. 2.3, we selected 𝐾cutoff = 32 rad/m in
this case.

(a) Ground truth (top layer, rela-
tive permittivity)

(b) Differential profile only with
Ave-sub processing (top layer,
relative permittivity)

(c) Wavenumber space (d) Central section of average
pattern

(e) Enlarged view after LPF and
Ave-sub process

(f) Differential profile after LPF
WS and Ave-sub process (top
layer, relative permittivity)

Fig. 10: Example of the WS compression and Ave-sub pro-
cessing in the pattern #2.

Fig. 11: The structure of the FC-MLP in the proposed
method.

3.2.3 Reconstruction of Complex Permittivity

This section presents the 3D complex permittivity pro-
file reconstruction results of the proposed scheme. Here, the
proposed method uses five frequencies, namely, 3.0, 4.0, 5.0,
6.0, and 7.0 GHz, which are included in the effective band-
width of the transmitted signal, and 16 combinations of the
transmitters and receivers are used. In addition, the rotation
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Fig. 12: Structure of 3D-CAE. The notation 𝑎 x 𝑏 x 𝑐 @ 𝑑 of each data box is defined as the number of pixels for Height (𝑎),
Width (𝑏), Depth (𝑐), and Channel (𝑑), respectively.

Fig. 13: Reconstruction results of relative permittivity and conductivity of pattern #1 with or without using the Ave-sub and
SSR-FD processes. Color denotes each value of relative permittivity and conductivity of profile.

angle is varied within a range of 0◦ ≤ 𝜃 ≤ 360◦ with 9◦
intervals; that is, 40 samples along the 𝜃 direction are used.
Then, the real and imaginary parts of 5× 16× 40-dimension
data are separately input to the FC MLP. Fig. 11 shows
the structure of the FC MLP, where batch normalization,
dropout, and fully connected processes are applied between
hidden layers. Figure 12 also shows the actual structure of
the 3D-CAE model (described in Sec. 2.3), which was used
in the proposed method. As shown in this figure, the kernel
size of the convolution filter is set to 4, where the stride index
is set to 2. To prevent over-fitting in the learning process, we

introduced several techniques, such as data normalization
(minimum:0 maximum:1), dropout (rate=50 %), or hyper-
parameter optimization (e.g., learning rate adjusted by the
Adam (adaptive moment estimation) algorithm [21]). The
activation function is set to Leaky RELU (Rectified Linear
Unit), where the negative section allows a small gradient in-
stead of being completely zero, helping to reduce the risk of
overfitting in neural networks [22]. Numbers of epochs in the
3D-CAE and FC-MLP are 20000 and 320000, respectively,
where the batch size are same as 65.

Here, the data set for the 66 phantom patterns is in-
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Fig. 14: Reconstruction results of relative permittivity and conductivity of pattern #2 with or without using the Ave-sub and
SSR-FD processes. Color denotes each value of relative permittivity and conductivity of profile.

(a) Relative permittivity, pattern
#1.

(b) Conductivity, pattern #1. (c) Relative permittivity, pattern
#2.

(d) Conductivity, pattern #2.

(e) Relative permittivity, pattern
#1.

(f) Conductivity, pattern #1. (g) Relative permittivity, pattern
#2.

(h) Conductivity, pattern #2.

Fig. 15: The 3-D views of the reconstruction 3-D profiles in the patterns #1 and #2. The red isosurfaces represent the portion
above the threshold of 20 for relative permittivity and 0.9 S/m for conductivity. 1st row : Ground truth profile. 2nd row:
Reconstruction profile.

vestigated using leave-one-out validation 66 times; in other
words, 65 patterns are used for training data without any val-
idation data for evaluating 1 test data. The 3D reconstruction
result in terms of relative permittivity and conductivity for
pattern #1 and #2 are shown in Figs. 13 and 14, respec-
tively. The results obtained without SSR-FD and Ave-sub
suffer from inaccuracy in providing almost the same profiles
in both relative permittivity and conductivity. This is be-

cause the scattered data in FC MLP or the training data in
the CAE dominantly include skin surface reflection or skin
profiles. On the contrary, the reconstruction results obtained
using both SSR-FD and Ave-sub show remarkably accurate
profiles in both relative permittivity and conductivity. This
is because the Ave-Sub processing can filter out the common
patterns in the wave-number data, so only differential pro-
files are trained using the 3D CAE. SSR-FD processing also
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(a) RMSE of relative permittivity

(b) RMSE of conductivity

Fig. 16: Box plots of RMSE of relative permittivity and
conductivity in 66 different patterns. Red line is median
value. Box denotes the interquartile range (IQR). Whisker
denotes the most extreme data points but not considered
outliers.

helps reconstruct the inner area of the phantom by eliminat-
ing the effect of skin surface reflection. In Fig. 14, it can
be seen that the reconstructions without Ave-Sub processing
suffers from many unnecessary responses. This is because
the skin and some internal domains are dominant in the WS
data without Ave-Sub processing, leading to overfitting. Fig.
15 also shows the 3D views of the reconstruction profiles in
each case, where the reconstruction values are binarized us-
ing thresholds (20 for relative permittivity and 0.9 S/m for
conductivity). This figure demonstrates that our proposed
scheme successfully reconstructs the full 3D image with-
out contaminated by any false images. Notably, the average
computational times for Ave-Sub and 3D CAE processes for
20000 epochs are 12 seconds and 5 hours, respectively. The
average computational times of SSR-FD and the FC MLP
for 320000 epochs are 7 seconds and 20 minutes, respec-
tively. The computational resources are as follows: Intel(R)
Xeon(R) Gold 6330 CPU @ 2.00 GHz CPU, NVIDIA A100-
PCIE-40GB and 1.00 TB RAM. After the above network is
trained, 3D complex permittivity imaging can be performed
using the scattering data in a few seconds.

3.2.4 Quantitative Error Analysis

Next, we introduce a quantitative error analysis using
the root mean square error (RMSE) metric by comparing the
ground truth and reconstruction profiles of relative permit-

(a) 𝜌 of relative permittivity

(b) 𝜌 of conductivity

Fig. 17: Box plots of Corrcoef of relative permittivity and
conductivity in 66 different patterns. Red line is median
value. Box denotes the interquartile range (IQR). Whisker
denotes the most extreme data points but not considered
outliers.

tivity and conductivity. which is defined as follows: Fig. 16
shows RMSE boxplots for the relative permittivity and con-
ductivity under four different conditions, as in Fig. 13 and
14. As shown in Fig. 16, the proposed method (Ave-sub and
SSR-FD processing) has the lowest median and interquartile
range (IQR) in both of relative permittivity and conductiv-
ity, indicating its significant superiority. Furthermore, to
test the reliability of these results, we illustrate boxplots of
the correlation coefficients 𝜌 obtained from comparing the
ground truth and reconstruction profiles of the relative per-
mittivity and conductivity shown in Fig. 17. As shown
in Fig. 17, for both relative permittivity and conductivity,
the median and IQR of the boxplot of 𝜌 are the highest for
proposed approach (Ave-sub and SSR-FD). Tables 2 and 3
summarize the median values of RMSE and 𝜌, respectively,
as the representative statistical values. These tables show
that the combination use of the Ave-sub and SSR-FD pro-
cesses significantly improves the median RMSEs or 𝜌 for
both the relative permittivity and conductivity. The above
error evaluations demonstrate that our method, specifically
the combination of the Ave-sub and SSR-FD processes, ex-
hibits significant advantages over other conditions regarding
3D complex permittivity imaging.

To demonstrate the superiority of the proposed scheme
in terms of statistical significance, we calculate 𝑝-values
through 𝑡-test. Table 4 and 5 summarizes the p-values for
the RMSE and 𝜌 results, respectively. In Table 4, all RMSE
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Table 2: Median values of RMSEs for each condition for
Ave-sub and SSR-FD processes.

Conditions relative permittivity conductivity
w/o Ave-Sub,
w/o SSR-FD 7.90 0.313

w/o Ave-Sub,
w/ SSR-FD 7.09 0.303

w/ Ave-Sub,
w/o SSR-FD 6.21 0.275

w/o Ave-Sub,
w/ SSR-FD 4.89 0.217

Table 3: Median values of 𝜌 for each condition for Ave-sub
and SSR-FD processes.

Conditions relative permittivity conductivity
w/o Ave-Sub,
w/o SSR-FD 0.487 0.497

w/o Ave-Sub,
w/ SSR-FD 0.618 0.625

w/ Ave-Sub,
w/o SSR-FD 0.701 0.686

w/o Ave-Sub,
w/ SSR-FD 0.819 0.801

p-values between the condition with Ave-Sub and SSR-FD
and the other conditions are less than 0.1. Moreover, all
p-value of 𝜌 between them are less than 0.01 (Table 5).
These evaluations demonstrate the statistical superiority of
the proposed imaging method with Ave-sub and SSR-FD.

3.3 Discussions

The results presented in Sec. 3.2 demonstrate that our
scheme, i.e., the 3D-WS-CAE, provides an accurate 3D com-
plex permittivity profile, especially by combining Ave-sub
and SSR-FD during pre-processing. While the previous
study [17], demonstrated that scattered data could directly
be converted into a complex permittivity profile, it did not
present the full 3D image; instead, only 18 outputs for each
discrete cubic cell were presented. In contrast, our scheme
provides 3D images with a 1-mm voxel using the WS and 3D
CAE-based dimension reduction scheme. In addition, as de-
scribed in Sec. 1, deep-learning-based approaches for com-
plex permittivity imaging [15,16] require prior inputs, which
are calculated or optimized using inverse scattering, result-
ing in a high computational cost. In contrast, our method
does not require inverse scattering and can quickly provide
the 3D complex permittivity profile once scattered data are
obtained.

Nonetheless, since we could not always provide an accu-
rate average breast model to the average subtraction process
(Sec. 2.3) in the realistic scenario, certain errors can be gen-
erated in the reconstruction profile in the case of a realistic
breast model. However, the proposed approach can provide
an accurate initial estimate for a post inversion scheme, e.g.,
CSI, to retain a physically reliable reconstruction and further

Table 4: p-value of RMSEs between the condition with
Ave-sub and SSR-FD and other conditions in the proposed
method.

Conditions relative permittivity conductivity
w/o Ave-Sub,
w/o SSR-FD 6.54 × 10−2 7.47 × 10−2

w/ Ave-Sub,
w/o SSR-FD 3.70 × 10−3 4.90 × 10−3

w/o Ave-Sub,
w/ SSR-FD 1.63 × 10−9 9.78 × 10−2

Table 5: p-value of Corrcoefs between the condition with
Ave-sub and SSR-FD and other conditions in the proposed
method.

Conditions relative permittivity conductivity
w/o Ave-Sub,
w/o SSR-FD 3.49 × 10−13 1.07 × 10−9

w/ Ave-Sub,
w/o SSR-FD 3.40 × 10−3 5.70 × 10−3

w/o Ave-Sub,
w/ SSR-FD 7.66 × 10−6 1.12 × 10−4

improve a reconstruction accuracy, as introduced in [20].

4. Conclusion

This paper proposed a deep learning-based 3D complex
permittivity reconstruction scheme that incorporating a 3D
CAE and a FC MLP for microwave breast quantitative 3D
imaging. Ave-Sub and WS compression are introduced as a
preprocessing step of the 3D CAE to reduce the dimension
of the input data in the post FC-MLP process. In addition,
the SSR-FD scheme is used as a preprocessing step to extract
distinct scattered responses from the inner area of the breast
phantom. Experimental validations using an original simpli-
fied breast phantom with 18 replaceable cubes demonstrated
that the proposed DNN scheme significantly improves the
reconstruction accuracy of the 3D complex permittivity pro-
files.
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