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Abstract
UWB(Ultra Wideband) radar offers a high range resolution and has a great promise to the near field sensing
system, such as robotic or security sensor, that can identify a target even in an optically harsh environment.
In recent years, some of radar imaging algorithms proactively employing multiple scattered components have
been developed, which can enhance an imaging range compared to that synthesized by a single scattered
one. As such, we have already proposed the SAR (Synthetic Aperture Radar) method using double scattered
signals, and it successfully expanded a reconstructible range of radar imagery without any preliminary
knowledge of target or surroundings. However, it is based on the multiple integration of the received signals,
that requires an intensive computation, and also its spatial resolution is generally insufficient for clear
boundary extraction such as edge or specular surface. As a substantial solution for the above problems,
this paper proposes a novel expanded 3-dimensional (3-D) imaging algorithm based on range derivatives of
double scattered signals. Some results in numerical simulations verify that the proposed method remarkably
enhances the visible range of radar imagery without any integration process, and extremely decreases the
calculation amount compared to that of the conventional method.

1 Introduction

UWB pulse radar with high range resolution creates various applications for near field sensing. As such,
a robotic sensor is one of the most promising applications, able to identify a human body even in optically
blurry visions such as dark smog in disaster areas or high-density gas in resource exploration scenes. While
various kinds of radar algorithms have been developed based on the an aperture synthesis [1], the time
reversal approach [2] or the range migration [3], they are not suitable for the above applications because
it is, generally, difficult to achieve both properties of low computation cost and high spatial resolution. As
a high-speed and accurate imaging method feasible for complex-shaped targets, the RPM (Range Points
Migration) algorithm has been established [4]. This algorithm directly estimates an accurate direction of
arrival with the global characteristic of observed range points, avoiding the difficulty of connecting them.
The RPM is based on a simple idea, yet, it offers accurate and super-resolution surface extraction even for
an extremely complicated boundary. However, they all have the unresolvable problem that aperture size
strictly constrains the imaging range of target boundary. In many cases, the greater part of a target shape,
such as a side of the target, falls into a shadow region since only single scattered components are used for
imaging.

To enhance imaging range, the SAR algorithm based on a double scattered path has been developed
[5]. Although this method proves that the shadow region imaging is possible by positively using the double
scattered signals without preliminary observations or target models, this method requires multiple integra-
tions of the received signals, and incurs a large calculation cost. As a solution for these problems, this paper
proposes a novel imaging algorithm based on the range derivative of doubly scattered signals, where an
initial image obtained by RPM is used to the best effect. This method is based on an original formula that
each DOA of the double scattered points is strictly derived from the derivative of range points. This formula
enables us to directly estimate a target boundary corresponding to the doubly scattered centers without any
integration procedures. The result of numerical simulation, investigating toric and cylindrical objects, shows
that this method accomplishes high-speed target boundary extraction, in situations which produce a shadow
using the existing techniques.

2 System Model

The left hand side of Fig. 1 shows the system model. It assumes the mono-static radar, and an omni-
directional antenna is scanned on z = 0 plane. It is assumed that the target has an arbitrary shape with a
clear boundary. The propagation speed of the radio wave c is assumed to be a known constant. A mono-cycle
pulse is used as the transmitting current. The real space in which the target and antenna are located, is
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Figure 1: System model (left). The estimated image I(r) with the conventional method at x = 0 (right).

expressed by the parameters (x, y, z). The parameters are normalized by λ, which is the central wavelength
of the pulse. z > 0 is assumed for simplicity. s′(X, Y, Z) is defined as the received electric field at the antenna
location (x, y, z) = (X,Y, 0) ≡ pL, where Z = ct/(2λ) is a function of time t. s(X,Y, Z) is defined as the
output of the Wiener filter with the transmitted waveform. This procedure is detailed in [4].

3 Conventional Method

As the conventional approach for enhancing the imaging range, the SAR employing the double scattered
signal has been already developed [5]. In general, a double scattered wave propagates with a different
path from that of a single scattered one. It therefore often provides independent information as to the two
scattering points. This method synthesizes the additional image I2(r) for r = (x, y, z), considering a double
scattered path,

I2(r) = −
∫

r′∈R

∫

pL∈Γ

I1(r′)s (pL, d2(r, r′, pL)/2) dXdY dr′, (1)

where r′ = (x′, y′, z′), R denotes the spatial region for image reconstruction, Γ is observation range, and
d2 (r, r′, pL) = ‖r − pL‖ + ‖r′ − pL‖ + ‖r − r′‖ holds. I1(r) denotes the original SAR image. The
minus sign in Eq. (1) creates a positive image focused by double scattered waves that have an antiphase
relationship from a single scattered one. The final image is defined as I(r) = I1(r)H (I1(r)) / {maxr I1(r)}+
I2(r)H (I2(r)) / {maxr I2(r)}, where H(∗) is the Heaviside function.

The left hand side of Fig. 1 shows the estimated image I(r) at x = 0, where the target boundary as in
the right hand side of Fig. 1 is assumed. The received signal is obtained at −2.5 ≤ x, y ≤ 2.5 using FDTD
(Finite Difference Time Domain) method, where the number of locations on each axis is 101. This figure
shows that the part of the side of the cylindrical target can be reproduced, and significantly expands the
imaging range. The reason is that double scattered waves are effectively focused on the part of the target
side using Eq. (1). It also claims that this method does not require target modeling or a priori information
of the surroundings. However, it requires the fifth time integration for imaging and its calculation time goes
up to over 106 sec for an Intel Pentium D 2.8 GHz processor.

4 Proposed Method

To overcome the problems described in the above, this paper proposes a high-speed 3-D imaging algorithm
for the shadow region based on a novel approach. This method employs target points preliminarily created
by the RPM method [4], and accurately reconstructs the target points corresponding to the double scattered
signals with their range derivatives.

First, a basic theory of the proposed method is described below. Here, two target points originating from
doubly scattering are defined as pi ≡ (xi, yi, zi) = pL + (Zi cos θi cos φi, Zi sin θi cos φi, Zi sinφi) , (i = 1, 2),
where Z1 = ‖p1 − pL‖, Z2 = ‖p2 − pL‖, 0 ≤ θ1, θ2 < 2π and 0 < φ1, φ2 ≤ π/2 hold. The left hand side
of Fig. 2 shows the example for p1, p2 and pL. (X,Y, ZD) is defined as a range point of double scattered
wave, which is extracted from the local minimum of s(X, Y, Z). Here, if ∂ZD/∂X and ∂ZD/∂Y exist on
each (X, Y, ZD), the next formulae hold,
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Figure 2: The relationship among p1, p2 and pL (left). The extracted range points of single (gray) and
double (black) scattered signals for targets in the left hand side of Fig. 1 (right).
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. (2)

Then, once p1 is determined, φ2 and θ2 are readily calculated from (∂ZD/∂X, ∂ZD/∂Y ) in Eq. (2). Besides,
if the normal vector en on p1 is given, the law of reflection derives Z2,

Z2 = ZD − Z1
(ZD − Z1)(e1 · en)2

ZD − Z1(e1 · en)2
(3)

where e1 = (p1−pL)/Z1 holds. Thus, p2 can be calculated from p1 and en in Eqs. (2) and (3). Furthermore,
p2 satisfies p2 = p1 + Z3e3, where Z3 ≡ ‖p2 − p1‖ = 2ZD − Z1 − Z2 and e3 = e1 − 2(en · e1)en.

Second, the proposed method makes uses of the preliminary estimated target points by RPM as the
first scattering location p1 with its normal vector en. RPM basically converts the range points to the
target points, satisfying an one-to-one correspondence. Here, we define each target and range point with
the RPM as prpm

i ≡ (xrpm
i , yrpm

i , zrpm
i ) and qrpm

i ≡ (Xrpm
i , Y rpm

i , Zrpm
i ), (i = 1, · · ·N rpm

T ), where N rpm
T

is the total number of target points by RPM. In addition, each normal vector erpm
n,i on prpm

i is given as

erpm
n,i =

(Xrpm
i − xrpm

i , Y rpm
i − yrpm

i ,−zrpm
i )

Zrpm
i

. This relationship is derived from the assumption that each

antenna receives a strong echo from the target boundary [4], which is perpendicular to a direction for a line
of sight as shown in the left hand side of Fig. 2. This algorithm determines an optimal p1 from a set of the
target points obtained by RPM, defined as Trpm =

{
(x, y, z) ∈

⋃Nrpm
T

i=1 prpm
i

}
. Here, the parameter vector

P i is introduced as P i ≡ (Rrpm
i ; QD), where QD ≡ (pL, ZD, ∂ZD/∂X, ∂ZD/∂Y ) Rrpm

i ≡ (prpm
i , qrpm

i ) hold.
Then, the proposed method determines the optimum candidate p̂1 for each QD as

p̂1(QD) = arg min
prpm

i ∈TRPM

∥∥pA
2 (P i) − pB

2 (P i)
∥∥2

, (4)

where, pA
2 (P i) ≡ pL+(Z2(P i) cos θ2(P i) cos φ2(P i), Z2(P i) sin θ2(P i) cos φ2(P i), Z2 sinφ2(P i)), and pB

2 (P i) ≡
prpm

i + Z3(P i)e
rpm
3,i hold. The optimum second scattering point p̂2(QD) is determined as p̂2(QD) =(

pA
2 (P̂ ) + pB

2 (P̂ )
)

/2, where P̂ is defined as P i when the evaluation value in the right term in Eq. (4)
becomes minimum. Note that, this method does not employ any integration of the scattered signals and
directly determines the doubly scattering points using the derivative of the range points.

5 Performance Evaluation in Numerical Simulation

This section investigates the imaging performance for each method in a numerical simulation. The
assumed target boundary and the received signals are same as in the case investigated in Sec. 3. The right
hand side of Fig. 2 shows the range points as (X, Y, ZS) and (X, Y, ZD) extracted from the output of a
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Figure 3: Estimated image with the proposed method in noiseless case (left) and in the case at S/N=30 dB
(right).

Wiener filter in this case. The left hand side of Fig. 3 depicts the estimated 3-D image with the RPM
and the proposed method. Here, (∂ZD/∂X, ∂ZD/∂Y ) is calculated by the Gaussian smoothing to suppress
fluctuations due to interference or noisy components. This figure verifies that the reconstructed target points
express a quite accurate target boundary including the side of the cylindrical objects. This is because the
double scattered wave propagates along the side of the toric and cylindrical boundaries. The mean accuracy
of the estimated points is 2.80× 10−2λ in this case. Note that, the proposed method requires only 10 sec for
obtaining a full 3-D image after creating the target points with RPM. This amount is prominently reduced
from that of the conventional method based on the fifth times integral for imaging after SAR processing [5],
requiring around 106 sec. Moreover, this method creates the target points, not the intensified SAR image,
which contributes to the identification of the edge or wedge region.

Finally, the example in noisy situation is investigated, whereby white Gaussian noise is added to each
received signal as s′(X, Y, Z). The right hand side of Fig. 3 shows the estimated points obtained by the
proposed method, where the mean S/N is 30 dB. S/N is defined as the ratio of peak instantaneous signal
power to the averaged noise power after applying the matched filter with the transmitted waveform. Although
the mean accuracy of the estimated target points denoting 3.02×10−2λ distorts due to the false range points
extracted from noisy components, the whole image can offer a significant target boundary including the side
of the rectangular boundary.

6 Conclusion

This paper proposed a novel imaging algorithm for expanding the imaging range, which efficiently utilizes
the range derivative of double scattered waves. This method has an outstanding advantage that it accom-
plishes extremely high-speed imaging by specifying a clear boundary extraction, simultaneously extending
the visible region without any preliminarily knowledge of target or surroundings. Numerical simulations in
the 3-D models, including multiple objects have shown that the proposed method substantially extended
the imaging range holding the accuracy around 10−2λ. Particular to calculation time, it is a more than
105 times improvement compared with that of the conventional SAR based method. Thus, this method can
significantly contribute to the design of real-time imaging sensors, as found in robots or security systems.

References

[1] D. L. Mensa, G. Heidbreder and G. Wade, “Aperture Synthesis by Object Rotation in Coherent Imag-
ing,” IEEE Trans. Nuclear Science., vol. 27, no. 2, pp. 989–998, Apr, 1980.

[2] D. Liu, et. al., “Electromagnetic Target Detection in Uncertain Media: Time-Reversal and Minimum-
Variance Algorithms,” IEEE Trans. Geosci. Remote Sens., vol.45, no.4, pp. 934–944, Apr, 2007.

[3] F. Soldovieri, et. al., “A Kirchhoff-Based Shape Reconstruction Algorithm for the Multimonostatic
Configuration, ” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 10, pp. 3031–3038, Oct, 2008

[4] S. Kidera, T. Sakamoto and T. Sato, “Accurate UWB Radar 3-D Imaging Algorithm for Complex
Boundary without Range Points Connections,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 4,
pp. 1993-2004, Apr., 2010.

[5] S. Kidera, T. Sakamoto and T. Sato, “Experimental Study of Shadow Region Imaging Algorithm with
Multiple Scattered Waves for UWB Radars,” Proc. of PIERS, Vol. 5, No. 4, pp. 393–396, Aug, 2009.


