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Abstract

Ultra-wide band (UWB) pulse radar with high range resolution and dielectric permeability is promising as an
internal imaging technique for non-destructive testing or breast cancer detection. Various imaging algorithms
for UWB radar techniques have been proposed, such as aperture synthesis, time reversal approach and the
space-time beamforming algorithm. However, these algorithms are based on a signal focusing scheme, which
often suffers from insufficient resolution to identify the detailed structure of buried targets and has high
computational cost in obtaining a full three-dimensional image. To overcome these difficulties, this paper
proposes an accurate fast imaging algorithm for targets buried in a uniform dielectric medium by advancing
the RPM(Range Points Migration) algorithm, which has been shown to achieve super-resolution imaging for
spatial measurement. Numerical simulation shows that the proposed algorithm achieves imaging accuracy
of around 1/20 λ with less computation time by specifying boundary extraction.

1 Introduction

UWB pulse radar has great potential to reconstruct objects buried in a human body or concrete wall while
avoiding harm to human tissue or communication systems. It thus has various applications such as the early-
stage detection of breast tumors, non-destructive testing to find cracks in pipes within walls, and positioning
of unexploded land mines in the subsurface. Various imaging algorithms suitable for the above applications
have been developed, such as synthetic aperture radar (SAR), time reversal algorithm and microwave imaging
via space-time beamforming (MIST) algorithm[1-3]. In particular, advanced SAR techniques extending to
internal imaging promise accurate image reconstruction using the aperture synthesis of received signals while
compensating velocity degradation. It has also been reported that MIST algorithm based on beamforming
is suitable for detecting tumors by removing scattered responses from breast surfaces to enhance detection
accuracy. However, these algorithms are based on signal integrations, and their spatial resolution is more
than half the pulsewidth, even in the noiseless case, and they require large computational resources especially
in the three-dimensional case. As a novel solution to these problems, this paper extends the principle of the
former RPM algorithm to internal imaging, which realizes high-speed and super-resolution spatial imaging[4].
Our proposed algorithm efficiently employs dielectric boundary points and their normal vectors preliminary
obtained by RPM, and accurately extracts the target boundary points employing the advanced RPM principle
and Snell’s law if the relative permittivity of the dielectric medium is a known constant. Numerical simulation
shows that our proposed algorithm has much better performance than the conventional SAR algorithm in
accurate boundary extraction. It also remarkably decreases the computational burden because it directly
maps the extracted range points to the target boundary points without integration.

2 System Model

Figure 1 shows the system model. We assume that a target and dielectric medium have arbitrary shape
with clear boundaries. The relative permittivity of the dielectric medium is assumed to be a known constant.
The propagation speed of the radio wave c in air is a known constant. A mono-static radar with an omni-
directional antenna scans along the x -axis. A mono-cycle pulse is provided as a transmitting current. The
real space in which the target and antenna are located is defined by parameters r = (x , z ), and is normalized
by the central wavelength λ of the transmitted pulse. s (X ,Z ) is defined as the output of the Wiener filter
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Figure 1: System model.
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Figure 2: Output of the Wiener filter s (X ,Z ), where the target as in Fig. 1 is assumed.

at the antenna location (X , 0), where Z = ct/2λ is expressed by time t . A set of range points defined as
Q ≡ {qi = (Xi ,Zi) , (i = 1, ...NQ)} is extracted from the local maxima of s (X ,Z )[4].

3 Conventional Algorithm based on SAR

This section describes the conventional imaging algorithm by extending SAR to internal imaging. This al-
gorithm deals with the boundary points of the dielectric medium rS ,j = (xS ,j , zS ,j ) (j = 1, ..., NS), preliminar-
ily produced by the RPM algorithm with a subset ofQ denoted as QS ≡ {qS ,j = (XS ,j ,ZS ,j ) , (j = 1, ...,NS )

}
,

with each member having a minimum Z for each antenna location. Each point rS ,j is regarded as a can-
didate for an incident point on the dielectric medium boundary. The SAR scheme is then readily extended
to imaging of a target buried in the dielectric medium using RPM points. If the relative permittivity εr is
known, the internal image I (r) is formulated as

I (r) =
∫
X∈Γ

N ′
S∑

j=1

s
(
qS ,j

)
s (X , d2 (X , r, rS ,j )) dX , (1)
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Figure 3: Estimated images with SAR algorithm in noiseless situation.

where d2 (X , r, rS ,j ) =
√

(X − xS ,j )
2 + zS ,j

2 +
√

εr

√
(x − xS ,j )

2 + (z − zS ,j )
2 and Γ denotes the spatial

range of the antenna scanning. rS ,j is interpolated with a cubic spline function, and the interpolation
increases the number of boundary points to N ′

S . In Eq. (1), rS ,j is regarded as the incident points on
the dielectric medium, and a buried target boundary is reconstructed by aperture synthesis considering the
velocity degradation. Figure 2 shows an example of s (X ,Z ) in the case illustrated in Fig. 1, where each
signal is received at 101 locations for −2.5 ≤ X ≤ 2.5. The conductivity of each target is set to 1.0×106S/m.
The conductivity and relative permittivity of the dielectric medium are set to 1.0 × 10−2S/m and εr = 5,
respectively. Figure 3 shows the image I (r) obtained by this algorithm in the noiseless situation, which is
normalized by the maximum value of I (r). It is confirmed that while parts of the targets can be recon-
structed, undesirable false images are created outside the dielectric medium. Furthermore, the computational
time is longer than 1300 s with a Xeon 2.40 GHz processor. Note that in the three-dimensional case, this
computational cost becomes an enormous and is impractical for medical screening or non-destructive testing.

4 Proposed algorithm

To overcome the problems described above, this paper proposes a novel imaging algorithm for objects
buried in a dielectric medium. The algorithm makes use of the inherent characteristic of the RPM algorithm,
which provides not only accurate target points but also the normal vectors on their boundaries without a
derivative operation. If a normal vector at each dielectric boundary point is given, the propagation path
in its medium is automatically calculated using Snell’s law. In fact, each normal vector on RPM boundary
points rS ,j is calculated as en,j = ((XS ,j − xS ,j ) ,−zS ,j ) /ZS ,j . Here, a set of all range points except QS

is defined as QM = Q⋂QS ≡ {
qM ,i = (XM ,i ,ZM ,i) , (i = 1, ...,NM )

}
. For each rS ,j , the potential target

points rM ,j

(
qM ,i

)
corresponding to qM ,i are calculated:

rM ,j

(
qM ,i

)
= rS ,j +

(
ZM ,i − Z1,j

(
qM ,i

))
et,j√

εr
, (2)

where Z1,j

(
qM ,i

)
=
√

(XM ,i − xS ,j )
2 + z2

S ,j , et,j = R (θt ) (−en,j) and R (θ) is a rotation matrix in the

counterclockwise direction, and the refraction angle θt = sin−1
(
sinθi/

√
εr
)
Dθi = sin−1 (en,j × ei,j ). Here,

ei,j = ((XM ,i − xS ,j ) ,−zS ,j ) /Z1,j

(
qM ,i

)
. Figure 4 shows the relationship between the potential target

points and the boundary points of the dielectric medium. The algorithm assumes that the target point
exists in a set of rM ,j

(
qM ,i

)
and XM ,k → XM ,i rM ,j ′

(
qM ,k

)
close to the actual target point corresponding

to qM ,i , and XM ,k → XM ,i which is the extended principle of the RPM [4]. To detect the actual target
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Figure 4: Relationship between the potential target points and the boundary points of the dielectric medium.

point corresponding to qM ,i , the function f
(
rM ,j

(
qM ,i

)
, qM ,k

)
is introduced:

f
(
rM ,j

(
qM ,i

)
, qM ,k

)
= exp

(
−min1≤j ′≤NS

∣∣rM ,j

(
qM ,i

)− rM ,j ′
(
qM ,k

)∣∣2
2σ2

r

)
, (3)

where σr is an empirically determined constant. Figure 5 depicts the relationship between the two groups
of the candidate points rM ,j

(
qM ,i

)
and rM ,j ′

(
qM ,k

)
. Any function with a central peak and symmet-

ric curve, such as the raised cosine function, can be used in Eq. (3) instead of the Gaussian function.
f
(
rM ,j

(
qM ,i

)
, qM ,k

)
is a weight based on the minimum distance between rM ,j

(
qM ,i

)
and all candidate

points determined by qM ,k . The target points for each qM ,i are calculated as

r̂M

(
qM ,i

)
= arg max

rM ,j (qM ,i)

∣∣∣∣∣
NM∑
k=1

s
(
qM ,k

)
f
(
rM ,j

(
qM ,i

)
, qM ,k

)
exp

(
−|XM ,i − XM ,k |2

2σ2
X

− |ZM ,i − ZM ,k |2
2σ2

Z

)∣∣∣∣∣ , (4)

where σX and σZ are empirically determined constants. It is expected that the algorithm realizes accurate
internal imaging by incorporating the principle of the RPM algorithm and Snell’s law. In addition, the
proposed algorithm remarkably decreases the computational burden, compared with the traditional SAR
algorithm, by removing the integration process.

5 Performance Evaluation in Numerical Simulation

This section presents examples of the proposed algorithm using numerical simulation. Figure 6(a) shows
the target points estimated by RPM and the proposed algorithm. σr = 0.5λ, σX = 1.25λ, σZ = 0.5λ are set.
Here, the black dots denote the target points obtained by the proposed algorithm, whereas the white circles
are those preliminarily estimated by the RPM algorithm. Figure 6(a) shows that the proposed algorithm
accurately reconstructs the lower side of rectangular and triangular objects, and the false images outside
the dielectric boundary are completely suppressed. Note that there is accuracy distortion around the ellipse
target. This is because the left side of the dielectric boundary is not completely reconstructed by RPM,
and thus, r̂M ,j

(
qM ,i

)
in Eq. (2) is incorrectly calculated. In particular, the computational time is less

than 40 s with a Xeon 2.40 GHz processor, which is 34 times less than the time taken by the previous SAR
algorithm. Furthermore, Fig. 6(b) shows the target points r̂M

(
qM ,i

)
for another target case, where the

same parameters are used as in the case of Fig. 6 (a). The figure shows that the wider region of the ellipse
target is now reconstructed since the region of the dielectric boundary estimated by RPM is expanded in
this case. Considering the whole image, the proposed algorithm offers various target boundaries such as the
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Figure 5: Relationship between the two groups of the candidate points rM ,j

(
qM ,i

)
and rM ,j ′

(
qM ,k

)
.

triangular edge or plane structure of a rectangular target.
@For quantitative analysis, the following evaluation value is introduced as

ε
(
qM ,i

)
= min

rtrue

∣∣∣∣r̂M

(
qM ,i

)− rtrue

∣∣∣∣ , (i = 1, 2, ...,NM) . (5)

Here, rtrue expresses the location of the true target point. Figure 7 shows the number of estimated points
for each value of ε

(
qM ,i

)
. The mean accuracies denote ε = 6.39 × 10−2λ in the case of Fig. 6 (a), and

ε = 4.65 × 10−2λ in the case of Fig. 6 (b). Finally, an example of a noisy situation is investigated. Figures
8 and 9 show estimated points and the number of estimated points for each case of ε

(
qM ,i

)
for a signal-to-

noise ratio of 25dB. Here, Gaussian white noise is added to received signals and the signal to noise ratio is
defined as the ratio of the peak instantaneous signal power to the average noise power after applying the
matched filter. As shown in Fig. 8, there are inaccurate points between the ellipse and triangle objects. The
mean accuracies are ε = 6.76 × 10−2λ in the case of Fig. 6 (a) and ε = 6.84 × 10−2λ in the case of Fig. 6
(b). This result verifies that the proposed algorithm produces accurate images even for a noisy environment.
Moreover, part of the target boundary such as a rectangular or triangular side cannot be reconstructed. This
is an inherent characteristic of an imaging algorithm using only single scattered signals. In our future work,
we will enhance the imagery range using multiple scattered signals as discussed in [5].

6 Conclusion

This paper proposed an accurate fast imaging algorithm for targets in a dielectric substance with an
arbitral shape boundary. First, we evaluated the performances of the traditional algorithm as the extended
SAR to internal imaging, and showed the problems that it creates false images outside the dielectric medium
and has large calculation cost. As a novel solution to these problems, we proposed an accurate fast imaging
algorithm by incorporating the advanced RPM principle and Snell’s law. This algorithm has the significant
advantages that it does not require integration and offers a more accurate image by suppressing false images.
In numerical simulation, we found that the calculation time for the proposed algorithm is about 34 times
less than that for the conventional SAR algorithm, and the proposed algorithm achieves mean accuracy of
around 0.05λ for different targets and dielectric boundaries.
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Figure 6: Estimated image with the proposed algorithm in noiseless situation (upper:case(a), lower:case(b)).
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in noiseless situation.
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Figure 8: Estimated image with the proposed algorithm at S/N=25 dB(upper:case(a), lower:case(b)).
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Figure 9: Number of the estimated target points in each ε
(
qM ,i

)
at S/N=25 dB.


