Introduction

Microwave radar : Applicable to adverse weather or darkness

SAR(Synthetic aperture radar) : High-resolution imaging method

Target recognition with SAR imagery :

A great deal of experience is required because SAR image is

definitely different from optical image

 \Rightarrow ATR(Automatic Target Recognition) method is in demand

Conventional ATR Techniques

Traditional ATR methods for SAR imagery Neural Network based approach

- •[1] C. M. Pilcher *et al.*, *IEEE Trans. Aerosp. Electron. Syst.*, 2011
 - \Rightarrow Classification employing range profile data
- •[2] M. Martorella, *et al.*, *IEEE Trans. Aerosp. Electron. Syst.*, 2011 \Rightarrow Exploiting ISAR images with full polarimetric data
- Other ATR approach
 - •[3] Q. Zhao, IEEE Trans. Aerosp. Electron. Syst., 2001
 - \Rightarrow SVM (Support Vector Machine) based classification

Problem in traditional methods
 Inaccurate classification in the case of strong noisy situations or observation angle errors

 ⇒ More robust ATR method is proposed here !

System Model

- Mono-static radar system
- Targets with arbitrary shapes
- Transmitted signal : Frequency sweeping (complex value)
- •SAR image generation : Back projection algorithm
- Binarization method: Otsu's discriminant analysis method

System Model

- Mono-static radar system
- Targets with arbitrary shapes
- Transmitted signal : Frequency sweeping (complex value)
- •SAR image generation : Back projection algorithm
- •Binarization method: Otsu's discriminant analysis method

Conventional Method (Neural Network based Classifier)

Classification Principle :

Assessing difference among neuron's values of output layer

Proposed ATR Method (SOM Training phase)

SOM (Self Organizing Map): Unsupervised neural network method

Proposed scheme : SOM classification employing training data \Rightarrow Supervised SOM

- Other feature
- 1. Torus SOM
- : Periodical map structure
- \Rightarrow Avoiding undesired bias of node
- 2. BLSOM (Batch Leaning SOM)
- : Impervious to the order of training sequence

Periodical structure of SOM

$$\begin{aligned} & \text{Proposed ATR Method} \\ & \text{(Actual SOM training procedure)} \\ \text{Initial output vector on node p is defined} \\ & y(p;0) = \sum_{k=1}^{N_u} a_k(p) \mathbf{x}_k^{\text{tr}} / \sum_{k=1}^{N_u} a_k(p) \end{aligned} \stackrel{p: \text{Location of node}}{p: \text{Cotation SAR image}} \\ & \text{For } k \text{ th transing data } \mathbf{x}_k^{\text{tr}}, \text{ winner node } \hat{p}_k(t) \text{ is determined} \\ & \hat{p}_k(t) = \arg \max_{p \in \Omega} \left\| \mathbf{y}(p;t) - \mathbf{x}_k^{\text{tr}} \right\| \end{aligned} \\ & \text{After calculating } \hat{p}_k(t) \text{ for all training data,} \\ & \text{The output of each node is updated by:} \\ & y(p;t+1) = y(p;t) + \frac{\sum_{k=1}^{N_u} h(\hat{p}_k(t), p)(\mathbf{x}_k^{\text{tr}} - \mathbf{y}(p;t))}{\sum_{k=1}^{N_u} h(\hat{p}_k(t), p)} \\ & h(\hat{p}_k(t), p) = \beta(t) \exp\left(\frac{\left\| \hat{p}_k(t) - p \right\|}{2\sigma(t)^2} \right) \quad \beta(t), \sigma(t) : \text{ Monotonically} \\ & \text{decreasing for } t \end{aligned}$$

(Classification Phase)

Proposed ATR Method

Classification Principle :

Assessing value of integral of U-matrix field from training node

Proposed ATR Method

(Classification Phase: U-matrix metric)

Classification Principle :

Assessing value of integral of U-matrix field from training node

Experimental Validation

Experimental setup :1/200 downscaled model of X-band radar except for center frequency

Horn antennas (Beamwidth : 27 deg)
Slant range resolution : 9.375 mm
Off-nadir angle : 54.7 degree

Optical image for 5 civilian airplanes

• Frequency range: 24GHz – 40GHz

- •Aperture Length : 1600 mm
- •Tx and Rx Separation : 48 mm

Observation scene in experiment

Evaluation in Noisy Situation

Robustness to Observation Angle Errors

Angle observation error : φ

Robustness to Observation Angle Errors

Angle observation error : φ

-200 -100 0 100 200 x [mm]

A320

0 0 x[mm]

100 200

-200 -100

200

100

y [mm]

-100

-200

Conclusion

- Accurate ATR method based on Supervised SOM has been proposed
- Proposed method
 - 1. Supervised SOM for ATR classification issue
 - 2. New classification metric by using U-matrix metric
- Experimental validation :
 - Correct classification even in under SNR=10 dB
 - Robust feature for observation angle errors

Future work

• More accurate method exploiting complex value of SAR image