木寺研究室の紹介

<u>研究室HP</u>

キーワード: マイクロ波・ミリ波・テラヘルツ波 センシング, 癌細胞検知・治療, 非破壊計測, 人体識別 レーダ, トモグラフィ, 画像解析, 信号処理 深層学習, 逆問題解析, 統計処理

目標:マイクロ波・ミリ波・テラヘルツ波等の波動センシングにおいて 革新的研究基盤の構築と多様な応用展開を通じて 学術的・社会的に重要な課題の解決に貢献

マイクロ波・ミリ波帯 電磁波センシング

 マイクロ波帯: 0.1 GHz-10GHz(波長:数m-数cm)
 ・損失性誘電体の到違深度が深い (コンクリート,木材,土壌:50cm-1m) (生体,人体組織:5-10cm(脂肪組織))
 ⇒各種の非破壊検査,医療診断等に有望
 ミリ波帯: 10GHz-100GHz(波長:数cm-数mm)
 ・水蒸気・粉塵等の微粒子を透過,回折・多重散乱効果
 ⇒自動運転等で必須の全天候型周囲センサ, 影領域の人体検出・識別等に有用

マイクロ波乳癌診断

マイクロ波非接触非破壊検査

ミリ波車載センサ

マイクロ波・ミリ波帯 電磁波センシング

マイクロ波による医療診断及び治療

マイクロ波による乳がん診断の特徴

乳癌:

・癌の罹患率トップ(国内外)

既存診断技術:X線マンモグラフィ

- ・放射線による被曝、圧迫
- ・高濃度ブレストでの識別が困難
 ⇒受診率: 30%程度

マイクロ波マンモグラフィ

X線マンモグラフィ診断例

<mark>簡易スクリーニング検査</mark>として有望視されている 癌細胞の電気的特性を利用:正常細胞と癌細胞に有意な差 利点:低コスト・非接触・安全・簡便 →受診率の向上が期待される

https://www.chalmers.se/en/Projects/Pages/Microwave-tomography-for-breast-cancer.aspx

正常細胞と癌細胞の電気的特性

比誘電率

〈表1〉脂肪組織の電磁気学的パラメータ

A. Ghanbarzadeh et al., "Near-Field Radar Microwave Imaging as an Add-on Modality to Mammography", Intech Open., No. 2016

マイクロ波イメージング:レーダ方式

手法:ビームフォーミング法^[3], Synthetic aperture radar (SAR)^[4]

長所:・ 再帰的処理が不要であり,計算コストが低い

短所

- 複素誘電率の定量的な評価が困難
- ・ 低コントラスト(癌/乳腺=1.2程度)の場合, 識別が困難
- 不均質な媒質では単純な伝搬モデルで対応できない

トモグラフィ方式(複素誘電率画像化)

(X線CT:線形問題)

トモグラフィ方式の導入と改良法の検討

- ・不良設定性,初期値依存性
- ⇒ レーダ方式との双方向融合 ROI(関心領域)制限,初期値依存性を解消

レーダ ⇔ トモグラフィ 双方向処理 の導入

レーダとトモグラフィの双方向融合

広島大学病院との臨床試験データの共有

文科省 生体医歯工学共同研究拠点:

- ・広島大学 ナノデバイス・バイオ融合科学研究所 吉川 公麿 特任教授
- ・同大学医学研究科 岡田教授, 笹田講師

マイクロ波UWB装置(右図) ⇒臨床試験データを取得済(2019年度) ・症例数(癌あり:107例,癌なし:147例) MRI画像を同時に撮像

⇒リファレンスとして使用可能

進行中のプロジェクト: 共同研究 広島大学生体医歯工学共同研究拠点 島津製作所

UWBレーダモジュール 計測風景

(C)

マイクロ波による癌治療(マイクロ波焼灼)

マイクロ波アブレーション Microwave ablation (MWA):

・乳がん治療において最も侵襲の少ない治療法
 (マイクロ波プローブを癌細胞付近に挿入し,
 その周囲を高周波電磁波で焼灼)
 → 肝臓がん,腎臓がん,肺がん治療で利用されている

MWA治療でのポイント:

- ・焼灼領域をリアルタイムでモニタリングする必要がある
 - → マイクロ波を利用したモニタリング(イメージング)

H. Luyen, S. C. Hagness, and N. Behdad., "A Balun-Free Helical Antenna for Minimally Invasive Microwave Ablation" IEEE TRANS. ANTENNAS AND PROPAGATION, VOL. 63, NO. 3, MARCH 2015

©Society of Interventional Radiology, www.SIRweb.org

http://www.drcradiology.com/imaging/images/rfa2.jpg

リアルタイムMWAモニタリング

提案技術: アブレーション前後の受信信号の相関関係から境界を高速に推定

計算時間: within 0.1 sec(Intel Core i5 CPU 3.3 GHz) リアルタイム性・高精度・ノイズロバスト性を同時に実現!

S. Kidera, L. M. Neira, B. D. Van Veen and S. C. Hagness, "TDOA-Based Microwave Imaging Algorithm for Real-Time Microwave Ablation Monitoring", International Journal of Microwave and Wireless Technologies, 2018.

マイクロ波によるコンクリート非破壊検査

マイクロ波による非破壊道路モニタリング

・従来の電磁波探査技術:レーダ方式 背景媒質(コンクリート)と異なる複素誘電率を有する物体 (鉄筋,空洞,水等)からの反射波による探知・位置形状同定

・レーダ方式の問題点:反射強度のみを表示
 物体の物性(複素誘電率)を特定することが困難
 (土木研究所 CAESAR* 及び各種メーカでのヒアリングに基づく)

* CAESAR: 土木研構造物メンテナンス研究センター

従来のマイクロ波探査技術の課題

 ・従来の電磁波探査技術:レーダ方式 物体(鉄筋,空洞,水等)による反射波による 探知・位置形状同定
 ・レーダ方式の問題点:反射強度のみを表示 物体の物性(複素誘電率)を特定することが困難 複素誘電率比較

f = 10 GHz	$Re[\epsilon_r]$	$Im[\epsilon_r]$	
空洞	1	0	
コンクリート	7-8	0.01	
塩錆[1]	5-6	0.5	
赤錆[1]	8-10	1.0	
黒錆[1]	12-13	2-2.5	

レーダ画像による水の識別

レーダとトモグラフィの双方向イメージング

実道路試供体における複素誘電率画像化例

2.0 GHz帯 UWBレーダを用いた試供体(土木研 CAESAR提供)による

レーダとトモグラフィの融合法の実証実験

- ⇒ RPM法による空洞検出:高精度な位置・形状推定を実現
- ⇒ CSI法によるROI制約複素誘電率推定:誘電率推定において20%程度の相対誤差

実道路(新利根川橋)における複素誘電率イメージング結果

道路下面の遊離石灰箇所 y Free lime area $2.0 \, \text{m}$ 1.7 m الے 400 R 500 0<u>m</u> 1.0 m ^x $[{\rm m}_{15}^{-5}]_{10}^{-5}$

正常領域

3800

4000

20

4200

40

異常領域(遊離石灰)

4400

x [mm]

60

x[cm]

80

4600

レーダデータの機械学習に基づく異常識別

DBSCAN(Density-based spatial clustering of applications with noise)

x

空洞

鉄筋

自動運転等の人体識別センシング

人物検知レーダセンサ

車載レーダの必要性

KIDERA LABORATORY

自動運転時代の到来により,

衝突回避・周囲環境モニタリングセンサの需要が高まる

→ 昼夜全天候型のレーダは必須

(粉塵・濃霧・夜間・悪天候でも計測可能)

→回折波 及び 多重散乱波による
見通し外イメージングによる事故軽減

独自の画像化法(RPM法)

提案法: RPM(Range Points Migration)法^[1,2]

原理:観測される距離点(Range point)を反射点に写像(インコヒーレント処理) (ガウスカーネル密度推定による統計的アプローチ)

→ 距離と方向のJoint問題をほぼ完全に解決

主な性能・精度:1/100波長・分解能:1/10波長 ・高速処理(3次元問題:数秒程度)

多重散乱波イメージング

RPM法+多重散乱波合成
 ⇒従来再現できなかった領域の
 イメージングに成功
 (S. Kidera *et. al., IEEE Trans. GRS,* 2011.)

処理時間: SAR:約10万秒 RPM:約10秒

双方向処理による多元的人体検出

回転金属球実験:各手法での推定結果

真の速度・画像分布 1800 0.15 [m/s] 0.1 1600 0.05 > velocity 0 -0.05Doppler 1000 -0.1 -0.15 800 -500 500 0 x [mm]

ドップラ速度とRPM画像の統合 (STFT+SAR+RPM+WKD)

手法	$\mathbf{E}_{rr}(D) \leq 40 \mathbf{mm}$	RSME	計算時間[s]
従来RPM	14.5 %	418.0 mm	2.3
提案RPM	51.6 %	280.0 mm	15.8

コヒーレント(SAR,STFT) + インコヒーレント処理 (RPM,WKD)の統合+速度と画像の統合を実現

T. Ando et al., IEEE JSTARS, 2022

KIDERA LABORATORY

UEC

ミリ波レーダデータの機械学習に基づく人体識別

KIDER/

UFC

多重散乱環境を利用した識別

Radar

多重散乱環境を利用した識別

レーダ画像(遮蔽なし)

(Object

/eh1cl

	Data length	レーダ画像なし	レーダ画像あり
Feature 1 (Raw)	-	56.6 %	85.6 %
Feature 2 (Time derivative)	-	49.7 %	85.6 %
Feature 3	10	83.1 %	99.8 %
(Time shift)	50	91 %	100 %
Feature 4	10	82 %	94.7 %
(STFT)	50	85.2 %	100 %

将来的な展開

テラヘルツ波帯への拡張

・ 波長:100µm (3THz) →高い空間分解能(数百µm級)

・ 数mm程度の透過性 (皮膚表層,薄い誘電体膜を透過)

・ 分光処理により物質固有の吸収スペクトル

非破壊イメージング技術(異物検査、セキュリティ等) 化学分析(医薬品検査、薬物検査等)

理化学研究所:http://www.riken.jp/lab-www/THz-img/annual_Framesetoo1.htm

分光RPM法の開発

x [mm]

産学官連携

学部生・大学院生の指導実績(UEC着任13年目)

学部生:39名,博士前期:33名,博士後期:3名

指導学生の実績(学生が第一著者分)

学術雑誌への論文掲載(IEEE:30件以上,IEICE:30件以上) 国際会議発表(110件以上),国内学会発表(120件以上) 国際会議論文賞(10件以上),本学学生表彰(15名以上)

教員:木寺 正平(教授)

経歴: 2009年にUECに着任(E→M), 2014年9月に I 専攻に異動 研究室: 西2号館 601,605,607,609号室 2023年度の構成員: D:3名, M2:4名, M1:3名, B4:4名, 秘書:1名 イベント:夏の合宿(避暑地), スポーツイベント等

計算機:

PC (一台/人): Dell Precision T7600, T3610 (Workstation級) サーバ: GPU搭載サーバ: 10 台以上 → 大規模電磁界解析に使用

サーバ	機種	メモリ	СРИ	コア数	スレッド 数
40	R750	2 TB	Intel Xeon Gold 6330 x2	56	56
44	R730	128GB	Intel Xeon E5-2680 v4	28	56
50	R740	768GB	Intel Xeon Gold 6130	32	64
54	R440	384GB	Intel Xeon Silver 4110	16	32
57	R740	512GB	Intel Xeon Silver 4110	16	32
64	R740	1024GB	Intel Xeon Silver 4210	20	40
65	R740	1024GB	Intel Xeon Silver 4210	20	40
68	R840	3 TB	Intel Xeon Gold 5218 x4	64	128
69	R750	512 GB	Intel Xeon Gold 6330 x2	56	56
70	R750	2 TB	Intel Xeon Gold 6330 x2	56	56
71	R750	2 TB	Intel Xeon Gold 6330 x2	56	112

学外(自宅等)からリモートで 多数のサーバにアクセスして 効率的に作業することが可能

電磁界解析ソフトウェア: XFDTD BioPro, Wireless Insight, XGTD 等: 複数ライセンスを保持

Wavefarer による自動車レーダシミュレーション

XFDTD BioPro による生体内電磁波シミュレーション

実験設備(W2-609, W11-301, 107, 地下暗室)

電波暗室

複数UWBレーダシステム

学部生: 進学:電通大,東工大,東大等 就職:セコムトラストシステムズ、アンリツ,フジテック等

大学院生: 進学:電通大(博士課程) 就職:三菱電機,日立製作所,NTTデータ,NTTコムウェア, Canon,ソニーセミコンダクタソリューションズ、東北電力、 富士通,野村総研,NEC,アンリツ、KONICA MINOLTA, フューチャーアーキテクト,ルネサスエレクトロニクス、 NHK、RICOH,矢崎総業、デンソーテクノ等