木寺研究室の紹介

研究室HP

キーワード:

マイクロ波・ミリ波・テラヘルツ波 センシング, 癌細胞検知・治療,非破壊計測,人体識別 レーダ,トモグラフィ,画像解析,信号処理 深層学習,逆問題解析,統計処理

木寺研究室の紹介

目標:マイクロ波・ミリ波・テラヘルツ波等の波動センシングにおいて

革新的研究基盤の構築と多様な応用展開を通じて

学術的・社会的に重要な課題の解決に貢献

情報科学システム科学

深層学習,ベイズ推定スパースモデリング

癌・脳出血診断 バイタルサイン測定

土木 安全工学

高度ITS インフラセンシング 波動センシング システム論

量子科学

量子センシング 量子レーダ 量子イメージング

化学 材料工学

複素誘電率測定 高分子・ガス分析

宇宙 地球科学

惑星地質・資源探査 地殻内部構造推定

マイクロ波・ミリ波帯 電磁波センシング

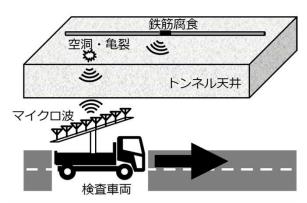
マイクロ波帯: 0.1 GHz-10GHz (波長:数m-数cm)

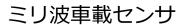
・損失性誘電体の到達深度が深い

(コンクリート,木材,土壌:50cm-1m)

(生体,人体組織:5-10cm (脂肪組織))

⇒各種の非破壊検査, 医療診断等に有望


ミリ波帯:10GHz-100GHz (波長:数cm-数mm)


- ・ 水蒸気・粉塵等の微粒子を透過, 回折・多重散乱効果
 - ⇒自動運転等で必須の全天候型周囲センサ, 影領域の人体検出・識別等に有用

マイクロ波乳癌診断

マイクロ波非接触非破壊検査

マイクロ波・ミリ波帯 電磁波センシング

マイクロ波帯: 0.1 GHz-10GHz (波長:数m-数cm)

・損失性誘電体の到達深度が深い

(コンクリート, 木材, 土壌:50cm-1m)

(生体,人体組織:5-10cm (脂肪組織))

⇒各種の非破壊検査, 医療診断等に有望

ミリ波帯:10GHz-100GHz (波長:数cm-数mm)

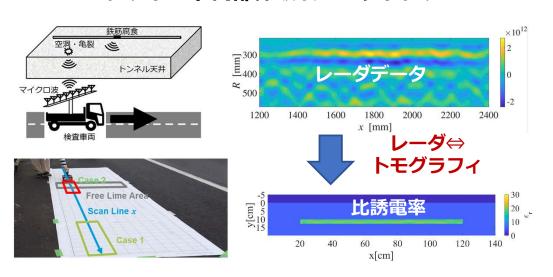
- ・ 水蒸気・粉塵等の微粒子を透過, 回折・多重散乱効果
 - ⇒自動運転等で必須の全天候型周囲センサ, 影領域の人体検出・識別等に有用

課題:

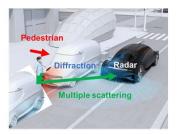
·空間分解能・精度:数10cm-数cm

(波長,帯域幅, SNR等(ハード側)で決定)

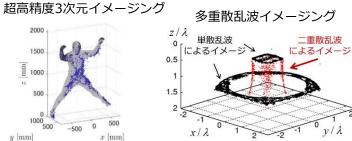
⇒ 革新的な画像解析・信号解析法(ソフト側)による 超分解能・超高精度化が待望されている

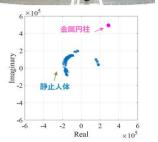

ミリ波車載センサ

マイクロ波マンモグラフィ + 癌治療

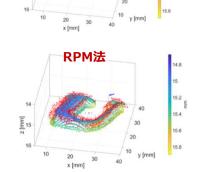


コンクリート内部非破壊モニタリング




自動運転等での周囲センシング

Diffraction Radar Multiple scattering



テラヘルツ波帯での3次元イメージング

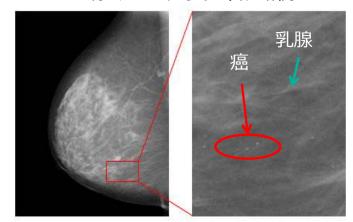
皮膚癌·乳癌診断·病理診断

従来画像化

マイクロ波による医療診断及び治療

マイクロ波による乳がん診断の特徴

乳癌:

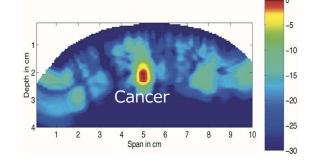

・癌の罹患率トップ(国内外)

既存診断技術:X線マンモグラフィ

- ・放射線による被曝、圧迫
- ・高濃度ブレストでの識別が困難

⇒受診率:30%程度

X線マンモグラフィ診断例


マイクロ波マンモグラフィ

簡易スクリーニング検査として有望視されている

癌細胞の電気的特性を利用:正常細胞と癌細胞に有意な差

利点:低コスト・非接触・安全・簡便 →受診率の向上が期待される

https://www.chalmers.se/en/Projects/Pages/Microwave-tomography-for-breast-cancer.aspx

正常細胞と癌細胞の電気的特性

〈表1〉脂肪組織の電磁気学的パラメータ

項目	比誘電率 ε _s	比誘電率 εω	導電率 σ _s [S/m]	伝搬遅延時間 τ[ps]
脂肪層	6.9	3.58	0.053	15.2
乳腺組織	49	21	0.72	17
癌	56	23	0.8	17
皮膚	37	4	1.1	7.23
筋肉	58	4	0.7	7

http://www.rf-world.jp/bn/RFW25/samples/p042-043.pdf

乳腺比率:85-100%

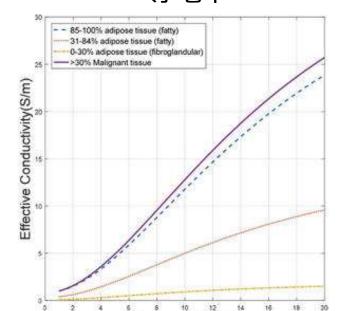
乳腺比率: 31-84%

乳腺比率: 0-30%

Frequency (GHz)

Dielectric Constant

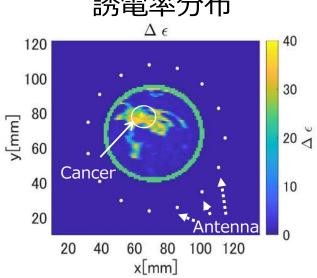
比誘電率


85-100% adipose tissue (fatty)

31-84% adipose tissue (fatty)

癌組織


>30% Malignant tissue

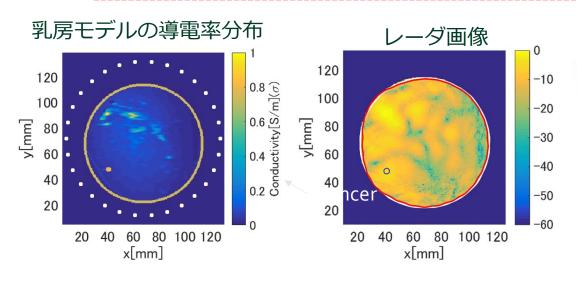

0-30% adipose tissue (fibroglandular)

Frequency (GHz)

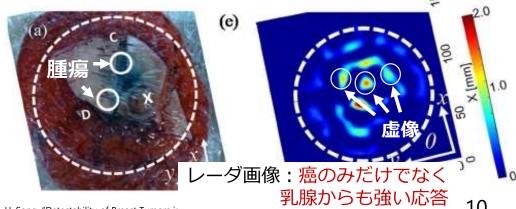
A. Ghanbarzadeh et al., "Near-Field Radar Microwave Imaging as an Add-on Modality to Mammography", Intech Open., N 2016

導電率

マイクロ波イメージング:レーダ方式


手法:ビームフォーミング法[3], Synthetic aperture radar (SAR)[4]

長所:


• 再帰的処理が不要であり、計算コストが低い

短所:

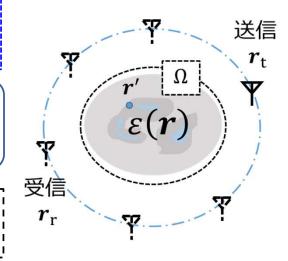
- 複素誘電率の定量的な評価が困難
- 低コントラスト(癌/乳腺=1.2程度)の場合, 識別が困難
- 不均質な媒質では単純な伝搬モデルで対応できない

乳癌組織に対するレーダ画像

H. Song, "Detectability of Breast Tumors ir
Breast Tissues of Total Mastectomy by IR-UWB-Radar-Based Breast Cancer Detector", IEEE Trans. EMB, Aug. 20

トモグラフィ方式(複素誘電率画像化)

特徴:


- ・ 複素誘電率分布を再構成
 - ⇒ 物性識別精度を向上

解くべき積分方程式(フレドホルム型)

散乱電界: $E^{S}(\boldsymbol{r}_{t}, \boldsymbol{r}_{r}) = \omega^{2} \mu \int_{\boldsymbol{r} \in \Omega} G_{b}(\boldsymbol{r}_{r}, \boldsymbol{r}') E^{T}(\boldsymbol{r}_{t}, \boldsymbol{r}') o(\boldsymbol{r}') d\boldsymbol{r}'$

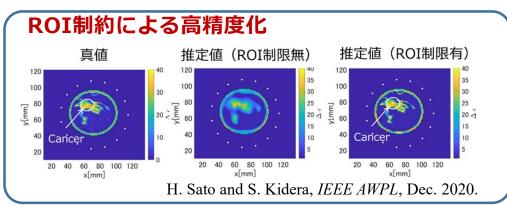
 $o(\mathbf{r}') = \varepsilon(\mathbf{r}') - \varepsilon_0(\mathbf{r}')$:目的関数(複素誘電率分布)

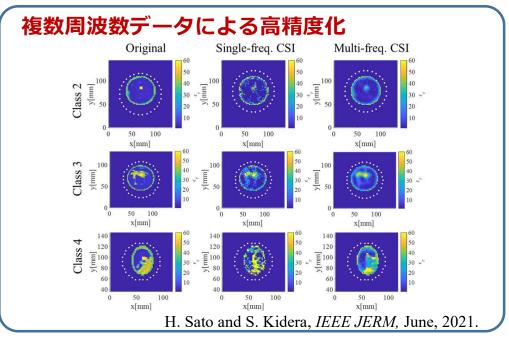
 $\frac{1}{2}G_b(m{r}_{ ext{r}},m{r}'): グリーン関数$

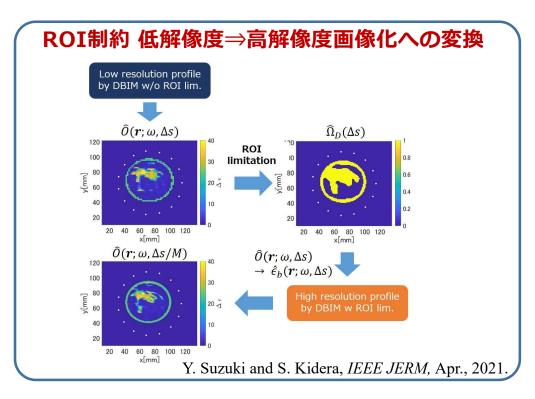
生体組織の複素誘電率

@2 GHz	実部	虚部
脂肪	4-6	0.8-1.2
乳腺	40-48	8-14
癌 (腫瘍)	58-62	13-17

問題点:

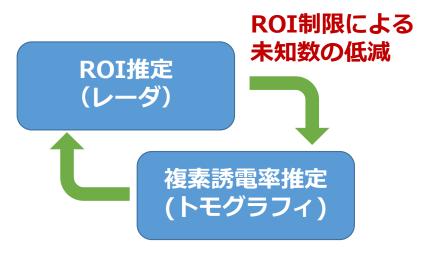

不良設定性: データ数が未知数よりも少ない

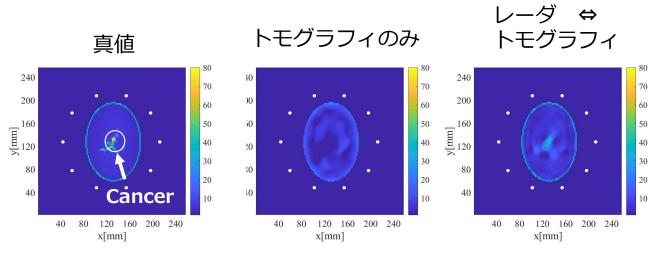

非線形問題:回折・多重散乱効果による非線形性


⇒ 非線形最適化法(逐次近似法等)が必要

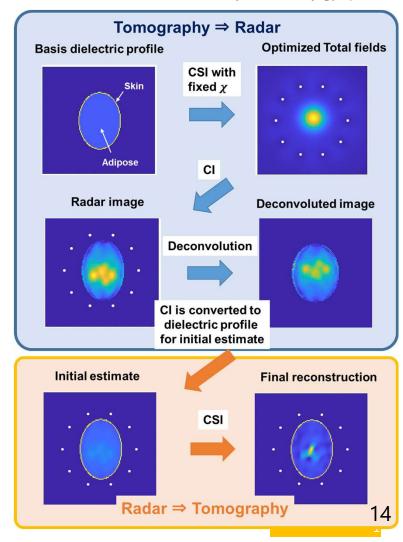
(X線CT:線形問題)

トモグラフィ方式の導入と改良法の検討




トモグラフィの問題点

- ・不良設定性, 初期値依存性
- ⇒ レーダ方式との双方向融合 ROI(関心領域)制限,初期値依存性を解消


レーダ ⇔ トモグラフィ 双方向処理 の導入

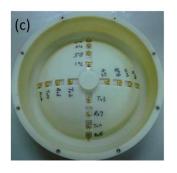
伝搬モデル推定+不要波抑圧

レーダとトモグラフィの双方向融合

広島大学病院との臨床試験データの共有

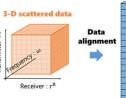
文科省 生体医歯工学共同研究拠点:

- ・広島大学 ナノデバイス・バイオ融合科学研究所 吉川 公麿 特任教授
- · 同大学医学研究科 岡田教授, 笹田講師
- マイクロ波UWB装置(右図)
- ⇒臨床試験データを取得済(2019年度)
- ・症例数(癌あり:107例,癌なし:147例)
- MRI画像を同時に撮像
 - ⇒リファレンスとして使用可能

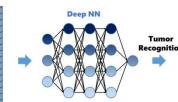

進行中のプロジェクト: 広島大学生体医歯工学共同研究拠点 島津製作所

UWBレーダモジュール

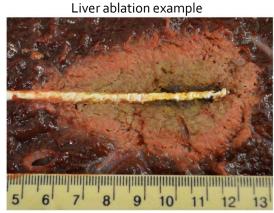
計測風景


正常 12000 10000

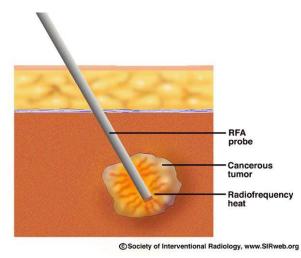
悪性腫瘍あり 2000


深層学習による識別モデル

2000


マイクロ波による癌治療(マイクロ波焼灼)

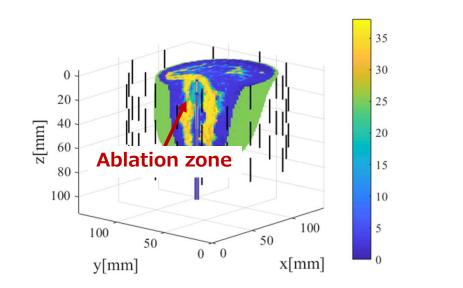
マイクロ波アブレーション Microwave ablation (MWA):

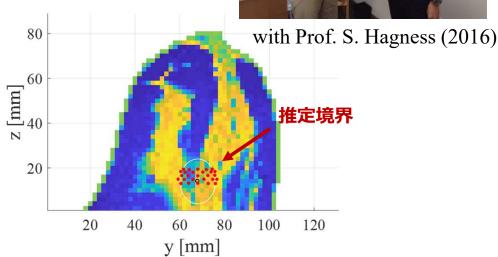

- ・乳がん治療において最も侵襲の少ない治療法 (マイクロ波プローブを癌細胞付近に挿入し, その周囲を高周波電磁波で焼灼)
 - → 肝臓がん, 腎臓がん, 肺がん治療で利用されている

MWA治療でのポイント:

- ・焼灼領域をリアルタイムでモニタリングする必要がある
 - → マイクロ波を利用したモニタリング(イメージング)

H. Luyen, S. C. Hagness, and N. Behdad., "A Balun-Free Helical Antenna for Minimally Invasive Microwave Ablation" IEEE TRANS. ANTENNAS AND PROPAGATION, VOL. 63, NO. 3, MARCH 2015




http://www.drcradiology.com/imaging/images/rfa2.jpg

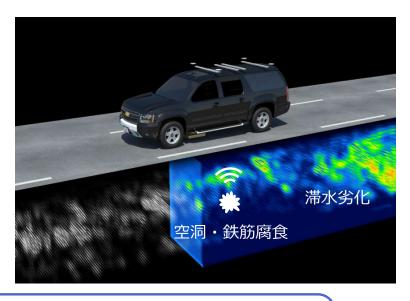
リアルタイムMWAモニタリング

提案技術:

アブレーション前後の受信信号の相関関係から境界を高速に推定

計算時間: within 0.1 sec(Intel Core i5 CPU 3.3 GHz) リアルタイム性・高精度・ノイズロバスト性を同時に実現!

S. Kidera, L. M. Neira, B. D. Van Veen and S. C. Hagness, "TDOA-Based Microwave Imaging Algorithm for Real-Time Microwave Ablation Monitoring", International Journal of Microwave and Wireless Technologies, 2018.


コンクリート内部**亀裂**・腐食探知モニタリング

マイクロ波によるコンクリート非破壊検査

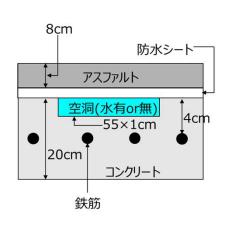
従来の非破壊検査

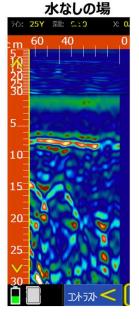
- 超音波探傷試験
- ・打音検査
 - →接触計測のため大規模領域の検査は困難
- **-- マイクロ波による検査 -----**
- ・50cm程度の到達深度(コンクリート)
- ・非接触計測が可能
 - → 車両搭載で高速データ取得
- ・広い指向性
 - → 大規模領域を迅速に検査

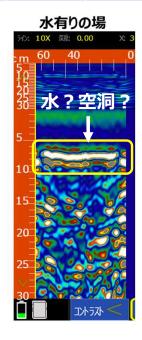
マイクロ波による非破壊道路モニタリング

- ・従来の電磁波探査技術:レーダ方式 背景媒質(コンクリート)と異なる複素誘電率を有する物体 (鉄筋,空洞,水等)からの反射波による探知・位置形状同定
- ・レーダ方式の問題点:反射強度のみを表示物体の物性(複素誘電率)を特定することが困難(十木研究所 CAESAR* 及び各種メーカでのヒアリングに基づく)

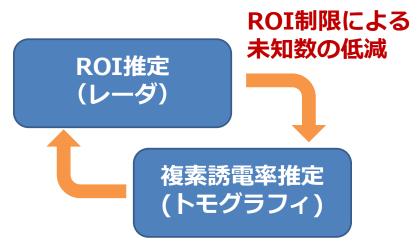
従来のマイクロ波探査技術の課題

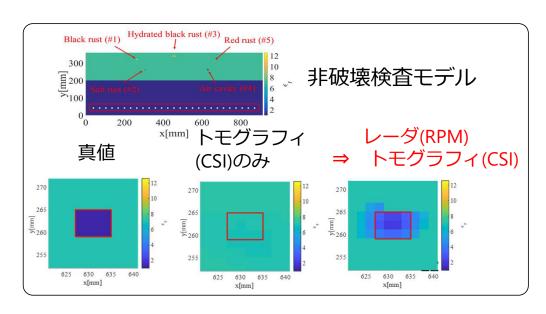

- ・従来の電磁波探査技術:レーダ方式 物体(鉄筋,空洞,水等)による反射波による 探知・位置形状同定
- ・レーダ方式の問題点:反射強度のみを表示 物体の物性(複素誘電率)を特定することが困難

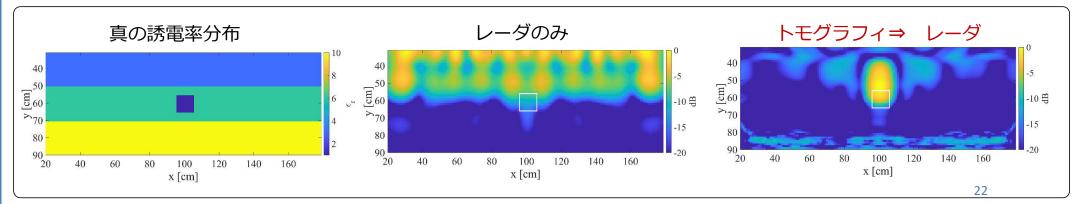

複素誘電率比較


f = 10GHz	$ m Re[\epsilon_r]$	$\operatorname{Im}[\epsilon_{\mathrm{r}}]$
空洞	1	0
コンクリート	7-8	0.01
塩錆 ^[1]	5-6	0.5
赤錆[1]	8-10	1.0
黒錆[1]	12-13	2-2.5

レーダ画像による水の識別



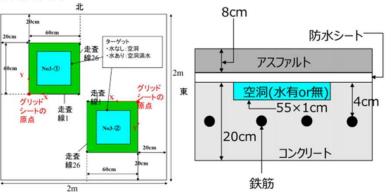




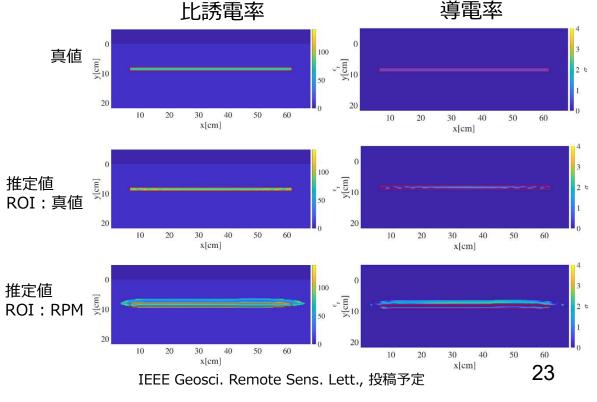
レーダとトモグラフィの双方向イメージング

伝搬モデル推定+不要波抑圧

実道路試供体における複素誘電率画像化例

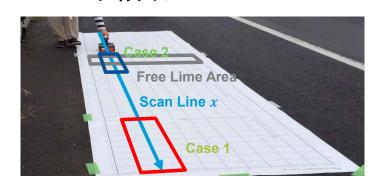

- 2.0 GHz帯 UWBレーダを用いた試供体(土木研 CAESAR提供)によるレーダとトモグラフィの融合法の実証実験
- ⇒ RPM法による空洞検出:高精度な位置・形状推定を実現
- ⇒ CSI法によるROI制約複素誘電率推定:誘電率推定において20 %程度の相対誤差

レーダ装置



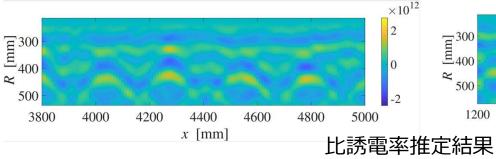
・試供体詳細

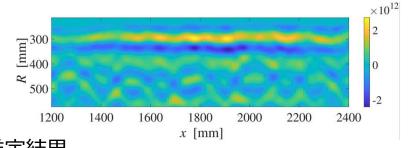
コンクリート内部の異物の複素誘電率推定を 実道路試供体で実証したのは世界初の報告

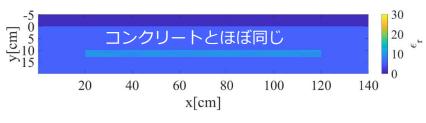


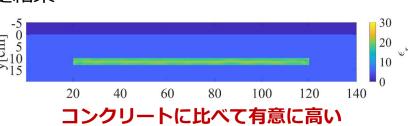
実道路(新利根川橋)における複素誘電率イメージング結果


道路下面の遊離石灰箇所


正常領域




異常領域(遊離石灰)



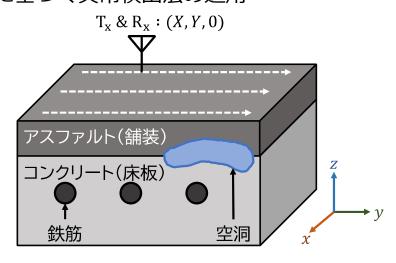
レーダデータ(B-SCAN)

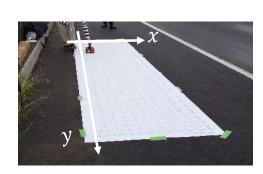
コンクリートに比べて有意に高い ⇒ 滞水状態を示唆

24

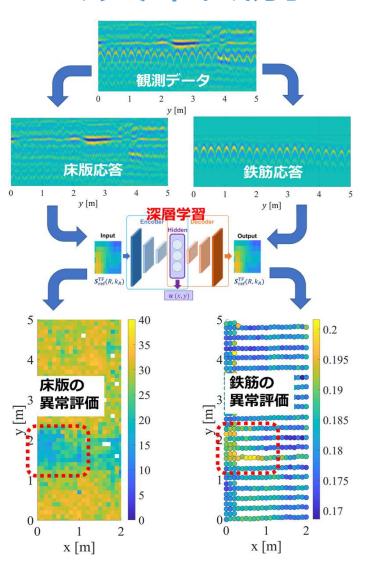
レーダデータの機械学習に基づく異常識別

実道路検査における課題:


数m程度の領域を迅速に検査


解決策:

異常検出による領域を絞り込み


⇒ 複素誘電率画像化法を適用

教師なし学習(異常検出): 観測データの深層学習(CAE)及び 非線形クラスタリング(DBSCAN) に基づく異常検出法の適用

 ${\tt DBSCAN} ({\tt Density-based \ spatial \ clustering \ of \ applications \ with \ noise})$

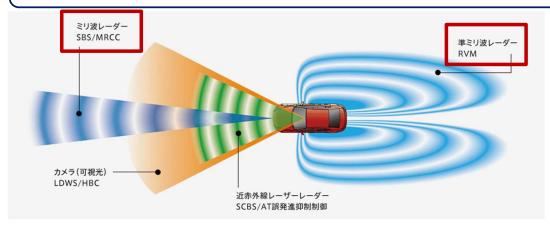
自動運転等の人体識別センシング

人物検知レーダセンサ

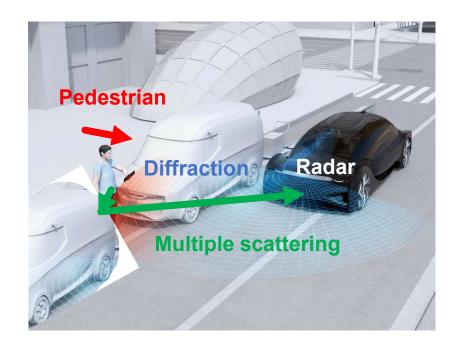
車載レーダの必要性

自動運転時代の到来により,

衝突回避・周囲環境モニタリングセンサの需要が高まる


→ **昼夜全天候型**のレーダは必須

(粉塵・濃霧・夜間・悪天候でも計測可能)


→回折波 及び **多重散乱波**による

見通し外イメージングによる事故軽減

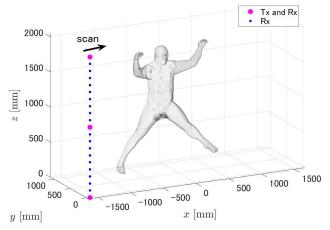
課題:分解能・精度:cm級+人体検出が困難

自動運転における各種センサの統合例

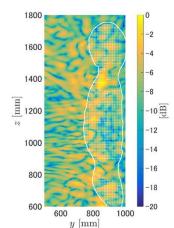
独自の画像化法 (RPM法)

提案法: RPM(Range Points Migration)法[1,2]

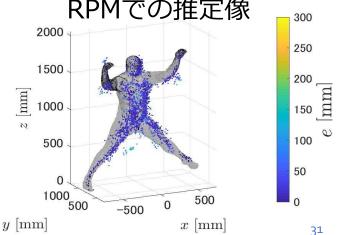
原理:観測される距離点(Range point)を反射点に写像(インコヒーレント処理)


(ガウスカーネル密度推定による統計的アプローチ)

距離と方向のJoint問題をほぼ完全に解決


主な性能・精度:1/100波長・分解能:1/10波長

・高速処理(3次元問題:数秒程度)



CIでの推定像

RPMでの推定像

多重散乱波イメージング

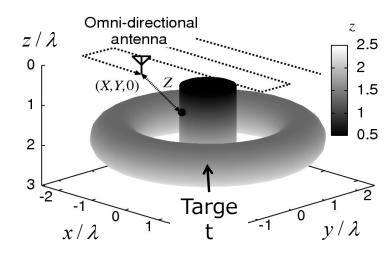
複数・複雑目標の場合:

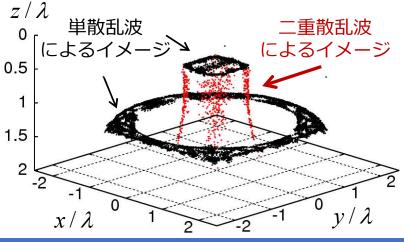
多重散乱波が存在⇒虚像の要因

逆転の発想

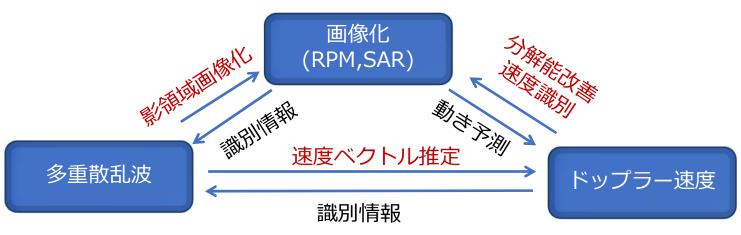
多重散乱波:

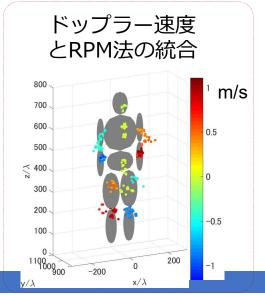
複数散乱点の位置情報を有する

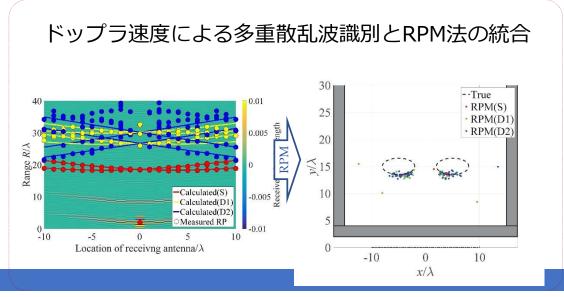

目標再現範囲を拡大(仮想素子による開口面積拡大)


RPM法+多重散乱波合成

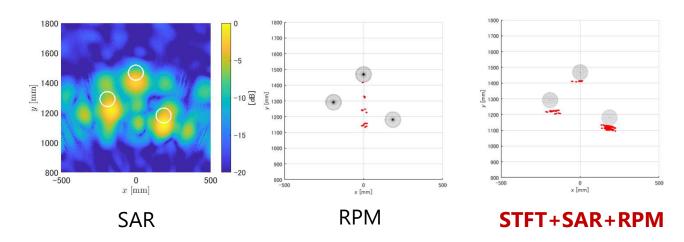
⇒従来再現できなかった領域の イメージングに成功 (S. Kidera *et. al., IEEE Trans. GRS,* 2011.)


処理時間:

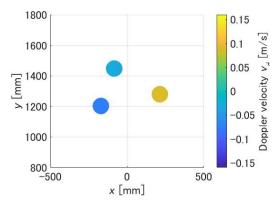

SAR:約10万秒 RPM:約10秒

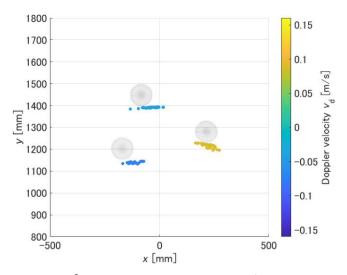


双方向処理による多元的人体検出



回転金属球実験:各手法での推定結果


手法	$\mathbf{E}_{rr}(D) \leq 40 \; \mathbf{mm}$	RSME	計算時間[s]
従来RPM	14.5 %	418.0 mm	2.3
提案RPM	51.6 %	280.0 mm	15.8



コヒーレント(SAR,STFT)+インコヒーレント処理 (RPM,WKD)の統合+速度と画像の統合を実現

T. Ando et al., IEEE JSTARS, 2022

真の速度・画像分布

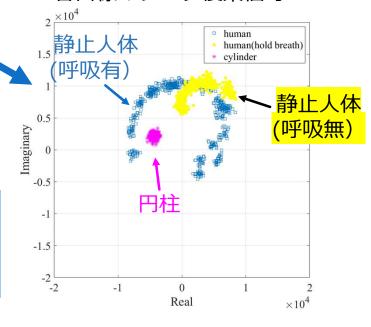
ドップラ速度とRPM画像の統合 (STFT+SAR+RPM+WKD)

ミリ波レーダデータの機械学習に基づく人体識別

- ・電波暗室において車両による遮蔽 見通し外に人体と円柱を配置
- ・24 GHz 帯MIMOレーダ(市販製品) による回折信号の取得

静止人体と人口構造物との 決定的な違いを発見!

SVMによる識別精度(遮蔽100%,距離:10 m)


・静止人体と金属円柱:80%

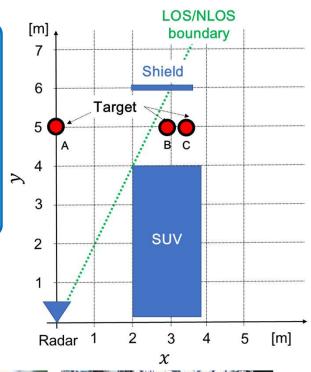
完全な見通し外環境下で人体と円柱を80%以上で識別! ⇒ ミリ波レーダ分野において極めてインパクトが大きい成果 進行中のプロジェクト: JST 創造的研究支援事業, 共同研究 マツダ

車両見通し外実験環境

各目標のレーダ複素信号

多重散乱環境を利用した識別

FMCW radar:

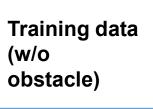

中心周波数: 24 GHz

帯域幅: 200 MHz

 $(\Delta R = 75cm)$

・ビーム幅:

水平: ± 45 度 垂直: ± 6.5度



Pedestrian (static)

Dummy (child)

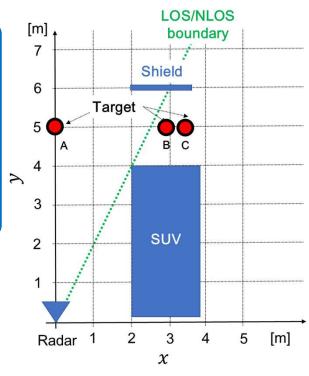
w/o rear shield

Test data (w/ obstacle : parked car)

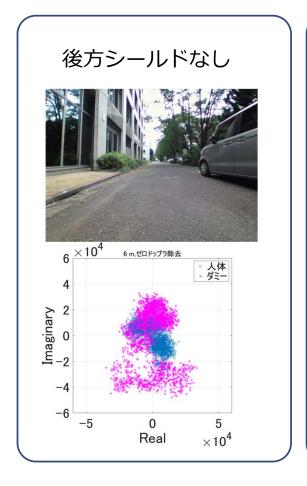
w/ rear shield

多重散乱環境を利用した識別

FMCW radar:

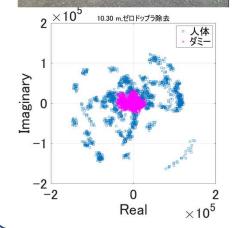

中心周波数: 24 GHz

帯域幅: 200 MHz

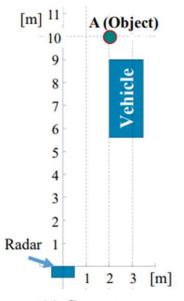

 $(\Delta R = 75cm)$

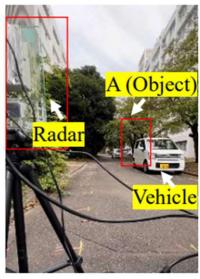
・ビーム幅:

水平: ± 45 度 垂直: ± 6.5度

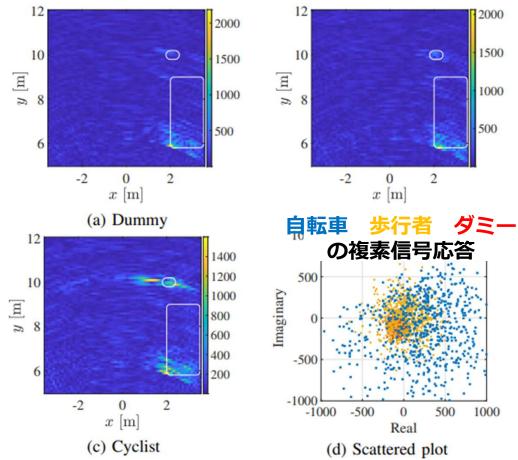


	識別精度	
	Feature 3 (Time shift)	Feature 4 (STFT)
後方シールドなし	66%	61%
後方シールドあり (多重散乱)	100%	87%



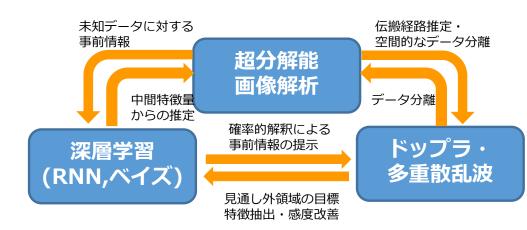

後方シールドあり (<mark>多重散乱</mark>)

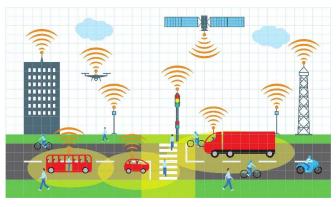
レーダ画像(遮蔽なし)



(a) Geometry.

(b) Scene.


	Data length	レーダ画像なし	レーダ画像あり
Feature 1 (Raw)	-	56.6 %	85.6 %
Feature 2 (Time derivative)	-	49.7 %	85.6 %
Feature 3	10	83.1 %	99.8 %
(Time shift)	50	91 %	100 %
Feature 4	10	82 %	94.7 %
(STFT)	50	85.2 %	100 %


将来的な展開

自動運転・ADASのみならず,

- ・高度ITSとの融合による交通量モニタリング⇒ 渋滞予測,事故防止システム
- ・運転者・同乗者のバイタルサインモニタリング ⇒運転者の精神状態(過度の緊張, 眠気等)や 同乗者の状態(体調不良等の検出)の把握 多様な応用に展開する

高度ITSとの融合

精度・分解能の 飛躍的な向上

RPM法及びドップラ・ 波数空間分離の導入

自動運転・ADAS

環境ロバストな センシング 交通事故軽減

見通し外センシング

多重散乱波及びレーダ画 像化に基づく外識別

多元的ミリ波 センシング

高度ITSとの融合

周囲センサとの統合 による渋滞予測 事故防止システム

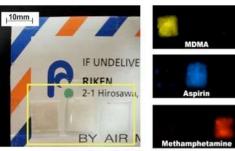
識別・予測技術

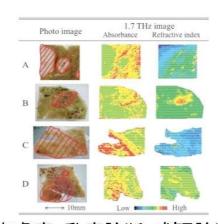
多重散乱波の深層学習 (RNN・CNN等) ベイズ推定・予測

運転者・同乗者の 生体モニタリング

バイタルサインに基づ く体調モニタリング

テラヘルツ波帯への拡張


- 波長: 100µm (3THz) →高い空間分解能(数百µm級)
- 数mm程度の透過性 (皮膚表層, 薄い誘電体膜を透過)
- 分光処理により物質固有の吸収スペクトル
- 非破壊イメージング技術(異物検査、セキュリティ等) 化学分析(医薬品検査、薬物検査等)


周波数: 0.6 THz (波長0.5mm)

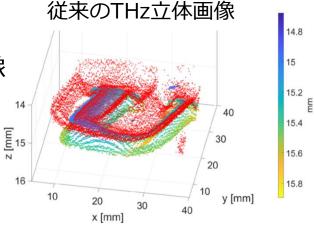
空間分解能: 0.5 mm

Dobroiu et al., Applied Optics, 43, 5367 (2004)

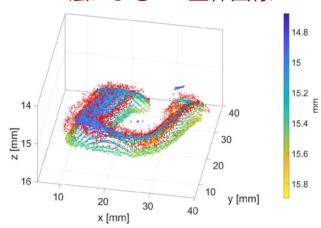
禁止薬物検査 農薬検査

皮膚癌·乳癌診断·病理診断

分光RPM法の開発


従来のテラヘルツイメージング法: 集光レンズによりターゲット位置で結像 →2次元走査により3次元画像化

- ·分解能:回折限界 (3THz:150µm)
- ・結像位置以外では分解能劣化


THzデータ解析法: 集光・結像を信号処理で実現 共焦点法・RPM法を導入

データ統合による高次イメージング:

- ・分光イメージング
- →吸収スペクトルからの物性識別

RPM法によるTHz立体画像

産学官連携

#公開情報

・ 電気通信大学(桐本教授)(航空機搭載画像レーダ)
・ Wisconsin-Madison 大学(乳癌検知レーダ)
・ 土木研究所(コンクリート非破壊検査)

- 広島大学(吉川教授), 広島大学病院
- 官
- ◆ 文部科学省(科研費)・国土交通省(非破壊検査)
- 総務省(140GHzレーダ, SCOPE)
- 科学技術振興機構(JST) (さきがけ, 創発)
- 公益財団等(20件以上)

モチベーション: 学会発表

研究(実験・プログラミング・アルゴリズム開発)

⇒成果 ⇒ **学会発表(国内・国外)** ⇒ 学術誌論文

学生の研究成果

学部生・大学院生の指導実績(UEC着任13年目)

学部生:39名,博士前期:33名,博士後期:3名

指導学生の実績(学生が第一著者分)

学術雑誌への論文掲載(IEEE:30件以上,IEICE:30件以上)

国際会議発表(110件以上),国内学会発表(120件以上)国際会議論文賞(10件以上),本学学生表彰(15名以上)

研究室詳細

教員:木寺 正平(教授)

経歴: 2009年にUECに着任(E→M), 2014年9月に I 専攻に異動

研究室: 西2号館 601,605,607,609号室

2023年度の構成員: D:3名, M2:4名, M1:3名, B4:4名, 秘書:1名

イベント:夏の合宿(避暑地), スポーツイベント等

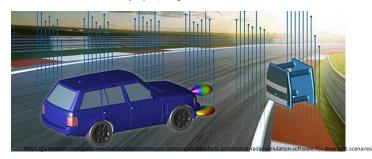
計算機環境

計算機:

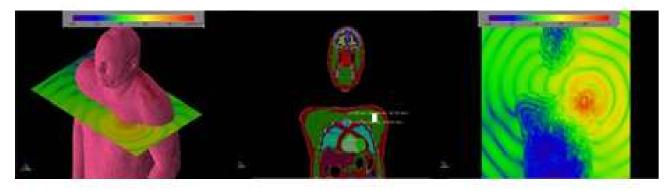
PC (一台/人): Dell Precision T7600, T3610 (Workstation級) サーバ: GPU搭載サーバ: 10 台以上 → 大規模電磁界解析に使用

サーバ	機種	メモリ	СРИ	コア数	スレッド 数
40	R750	2 TB	Intel Xeon Gold 6330 x2	56	56
44	R730	128GB	Intel Xeon E5-2680 v4	28	56
50	R740	768GB	Intel Xeon Gold 6130	32	64
54	R440	384GB	Intel Xeon Silver 4110	16	32
57	R740	512GB	Intel Xeon Silver 4110	16	32
64	R740	1024GB	Intel Xeon Silver 4210	20	40
65	R740	1024GB	Intel Xeon Silver 4210	20	40
68	R840	3 TB	Intel Xeon Gold 5218 x4	64	128
69	R750	512 GB	Intel Xeon Gold 6330 x2	56	56
70	R750	2 TB	Intel Xeon Gold 6330 x2	56	56
71	R750	2 TB	Intel Xeon Gold 6330 x2	56	112

学外(自宅等)からリモートで 多数のサーバにアクセスして 効率的に作業することが可能

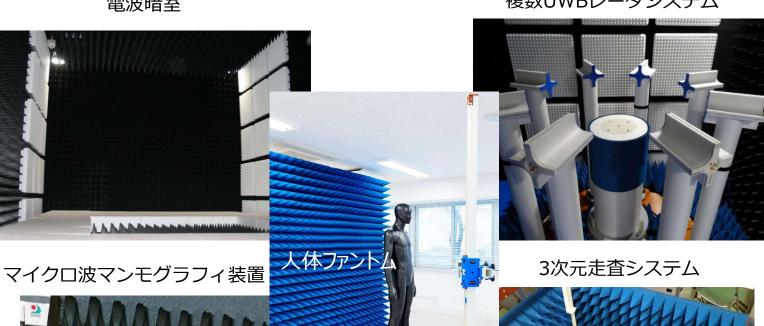


計算機環境


電磁界解析ソフトウェア:

XFDTD BioPro, Wireless Insight, XGTD 等:複数ライセンスを保持

Wavefarer による自動車レーダシミュレーション


XFDTD BioPro による生体内電磁波シミュレーション

実験設備 (W2-609, W11-301, 107, 地下暗室)

電波暗室

複数UWBレーダシステム

ミリ波MIMOレーダ (24GHz, 79GHz)

卒業生の進路

学部生:

進学:電通大,東工大,東大等

就職:セコムトラストシステムズ、アンリツ,フジテック等

大学院生:

進学:電通大(博士課程)

就職:三菱電機,日立製作所,NTTデータ,NTTコムウェア,

Canon, ソニーセミコンダクタソリューションズ、東北電力、

富士通,野村総研, NEC, アンリツ、KONICA MINOLTA,

フューチャーアーキテクト, ルネサスエレクトロニクス、

NHK、RICOH, 矢崎総業、デンソーテクノ等